Spectroscopy of C_{60} and C_{70} Complexes.

Dmitry V. Konarev, Natalia V. Drichko¹, Viktor N. Semkin¹, Yury M. Shul'ga, Andrzej Graja², Rimma N. Lyubovskaya*.

Institute of Chemical Physics RAS, Chernogolovka, 142432, Russia.

¹ Ioffe Physical-Technical Institute RAS, St. Peterburg, 194021, Russia.

² Institute of Molecular Physics PAN, Poznan, 60-179, Poland.

Abstract. Complexes of C_{60} and C_{70} fullerenes with organic donors were studied by IR-, UV-VIS-NIR- and X-ray photoelectron spectroscopies. The IR spectra of single crystals of some complexes show the $F_{1\nu}(4)$ C_{60} mode splitting into two components which is attributed to the freezing of the rotation of C_{60} molecule in the coordination with donors. The degree of charge transfer (CT) on C_{60} molecule estimated from the shift of the frequency of the $F_{1\nu}(4)$ unsplit band shows only weak CT in the complexes. The UV-VIS-NIR- spectra of some complexes show the presence of weak CT bands. A linear dependence of CT absorption energy on vertical ionization potentials of the donors was obtained for C_{60} complexes with tetrathiafulvalenes in solid state. The XP-spectra of the complexes show the changes in the energies of S2p, N1s, Te3d peaks of donors by 0.1-1.6 eV with respect to individual ones.

Introduction. Fullerenes as electron acceptors form compounds varying from molecular complexes [1-3] to ion-radical salts [4] analogously to planar π -acceptors such as tetracyanoethylene (TCNE) and tetracyanoquinodimethane (TCNQ). Due to a spherical shape, large size, high symmetry and polarizability [5] of fullerene molecules donor-acceptor complexes of fullerene have some peculiarities: charge transfer from initially planar donors to spherical C_{60} molecules [5], the I_h symmetry breaking [6,7] and the freezing of the rotation of C_{60} molecules in their coordination with donors [7]. In this paper we present some results of IR-, UV-VIS-NIR- and X-ray photoelectron spectroscopic studies of these peculiarities of the fullerene complexes.

Experimental. Complexes of C₆₀ and C₇₀ fullerenes were obtained by evaporation of fullerenes and donors solutions in carbon disulfide, benzene or pyridine (Py) under argon. The composition of the complexes was determined by elemental, thermogravimetric and X-ray analyses [2,3,8,9].

The IR transmission spectra of single crystals were measured at room temperature by using a FT-IR Perkin-Elmer 1725X spectrometer equipped with a microscope (2 cm⁻¹ resolution). KBr pellets were prepared with concentration of complexes 1:2000. UV-VIS-NIR absorption spectra were measured with a Lambda 19 Perkin Elmer UV-VIS-NIR spectrometer at room temperature in KBr pellets with concentration of complexes 1:4000 within 220-2000 nm range. The CT bands were obtained in 600-1300 nm range by the subtraction of a normalized spectrum of individual fullerene from that of the complexes. This procedure was possible due to the absence of donors absorption bands in this spectral range. XP -spectra were recorded on a VIEE-15 instrument and were calibrated against the C1s peak (285.0 eV). The spectral data for the complexes are presented in Table.

Table. The frequencies of the $F_{10}(4)$ C_{60} mode in the IR spectra of the complexes (single crystals and KBr pellets*), the position of the CT bands in the UV- VIS-NIR-spectra and the shift the binding energy of donor heteroatoms in XP-spectra of the complexes relatively to the individual donors.

N	Complex	Frequency of F _{1u} (4), cm ⁻¹	CT band, nm	Energy shift, eV
Г	C ₆₀ 250K[6]	1427.5 1430.5	-	-
1	293K[6]	1429.4	1.	
1	BTX ·C ₆₀ ·CS ₂	1428 1432	620	(Te) 0.4
2	BTX C ₆₀	1427	620	-
3	DBTTF C60 C6H6	1430* ¹	735	(S) 0.3
4	DBTTF-C ₆₀ -Py	1430*1	750	(S) 0.1
5	72 00 (772	1428	820]
6	D	1428*	895	(S) 0.0
7	$(TMDTDM-TTF)_2C_{60}(CS_2)_3$		900	(S) 0.1
8	(EDT-TTF) ₂ C ₆₀ ·CS ₂	1427	900	(S) 0.1
9	BEDO-TTF-C60-C6H6	1429	900	!- .
10	EDT-TTF C ₆₀ C ₆ H ₆	1428*	920	(S) 0.1
11	(DMDPhTTF) ₂ C ₆₀ ·C ₆ H ₆	1429*	940	(S) 0.1
12	EDY-BEDT-DT-C ₆₀ -C ₆ H ₆	1428*	935	(S) 0.4
13	OMTTF-C ₆₀ -Py	1428*	980	-
14	OMTTF C ₆₀ C ₆ H ₆	1428	1040	-
15		1428*	1240	-
16	12 00	1428.5 1432	-	(S) 0.7
17	BNDY-C ₆₀	1429	-	(S) 0.4
18	$(S_4N_4)_{0.8}C_{60}(C_6H_6)_{1.2}$	1430		(S) 0.3 (N) 1.6
19	TPC C ₆₀	1425 1431	-	-
20	$DAN \cdot C_{60}(C_6H_6)_3$	1426 1430	-	-
21	BEDT-TTF⋅C ₇₀ CS ₂	1428(C ₇₀)	860	-
22	(DMDPhTTF) ₂ C ₇₀ ·C ₆ H ₆	1430(C ₇₀)*	1000	-

 1 -A superposition of the $F_{1u}(4)$ C_{60} mode and the donor absorption band.

Abbreviations for donors: BTX - 9,9'-trans-bis(telluraxantenyle); DBTTF - dibenzotetrathiafulvalene (TTF); BEDT-TTF - bis(ethylenedithio)-TTF; DPhTTF - trans-4,4'-diphenyl -TTF; TMDTDM-TTF - tetramethylenedithio-4,5-dimethyl-TTF; EDT-TTF - ethylenedithio-TTF; BEDO-TTF - bis(ethylenedioxo)-TTF; DMDPh-TTF-trans-4,4'-dimethyl-5,5'-diphenyl-TTF; EDY-BEDT-DT- 2,2'-ethanediilidene -bis(4,5-ethylene-1,3-dithiol); OMTTF-octamethylene-TTF; BNDY-binaphto[1,6-d,e]-1,3-dithin-2-ylidene; TPDP-3,3',5,5'-tetraphenyldipyranylidene; S₄N₄- tetrasulfur tetranitride; TPC - triptycene; DAN - dianthracene.

Results and discussion. IR spectroscopy was used in the studies of the changes in symmetry and electron densities of donor and acceptor molecules in a complex formation. C_{60} molecule has the four IR active threefold degenerated F_{1u} modes [6,11], the $F_{1u}(4)$ mode at $1429 {\rm cm}^{-1}$ being the most sensitive to the changes in charge [10] and symmetry [6,11] of C_{60} molecule. Thus only the changes in the $F_{1u}(4)$ mode were considered. It is known [6] that in C_{60} crystals molecules nearly free rotate at room temperature and occupy the sites with T_h symmetry. At T<260K the orientational-ordering phase transition is realized in crystals and only "ratchet" rotation of C_{60} becomes possible, the molecular symmetry of C_{60} being lowered to S_6 one. This results in the double [6] or triple [11] splitting of the $F_{1u}(4)$ mode.

The absorption bands corresponding to the $F_{1u}(4)$ C₆₀ mode in the complexes are presented in Fig. 1. Donors have no substantial absorption in this range. For the first group of complexes (1a-4a) the $F_{1u}(4)$ band is split into two components. These split bands were fitted by a sum of two Lorentzians with nearly the same bandwidths ($\sim 6 \text{ cm}^{-1}$) whose position are given in

Table. The observation of only two components for the threefold degenerated mode can be explained by large bandwidths (\sim 6 cm⁻¹) and a comparatively low resolution of the experiment. The similar splitting of the $F_{1u}(4)$ mode into 3 components at room temperature was also observed in C_{60} complexes with amines [7]. We attributed this effect to the freezing of the rotation of C_{60} molecules at their coordination with donors analogously to the phase transition in C_{60} crystals at T<260K. The absence of free rotation of C_{60} molecules in DAN- C_{60} -($C_{6}H_{6}$)₃ and BTX- C_{60} - CS_{2} complexes at room temperature was confirmed by the data of X-ray analysis [2,12]. The freezing of the rotation lowers the C_{60} symmetry in the complexes relatively to that in C_{60} crystals at T>260K and results in the splitting of the $F_{1u}(4)$ mode. For the second group of complexes (1b-4b) the $F_{1u}(4)$ mode remains unsplit indicating free rotation of C_{60} molecules in these complexes at room temperature.

FIGURE 1. IR spectra of single crystals of the complexes in 1420-1440 cm⁻¹ range at room temperature: 1a- (BEDO)₂C₆₀; 2a- DAN·C₆₀·(C₆H₆)₃; 3a- TPC·C₆₀; 4a- BTX·C₆₀·CS₂ 1b- (S₄N₄)_{0.8} C₆₀ (C₆H₆)_{1.2}; 2b- BNDY·C₆₀; 3b-(EDT-TTF)₂C₆₀·CS₂; 4b- BTX·C₆₀

The dependence of the position of the unsplit $F_{1u}(4)$ mode on the degree of C_{60} reduction is almost linear [10]. The following relationship for the estimation of the CT degree (δ) on C_{60} molecule is derived from this dependence [5]: $\delta \cong 0.03~\Delta v$, where Δv is the shift of the $F_{1u}(4)$ mode position in the complexes (Table) relatively to that in individual C_{60} . The maximal shifts do not exceed 2 cm⁻¹ and are within the experimental accuracy. The values of δ estimated from this relationship are close to zero for all complexes (δ <0.05). Thus the compounds obtained are neutral complexes in a ground state.

UV-VIS-NIR spectroscopy shows the presence of CT bands of weak intensity in 600-1300 nm range in some complexes. The CT absorption energy (hv_{CT}) in neutral complexes is defined by $hv_{CT} = I_P^{\ \ } - E_A^{\ \ } - E_c$, where $E_A^{\ \ }$ is electron affinity of the acceptor, $I_P^{\ \ }$ is vertical ionization potentials of the donor and E_c is the energy of electrostatic interaction in excited ionic state. Therefore for one acceptor with a series of donors the hv_{CT} values depend linearly on donor $I_P^{\ \ }$. It is seen in Fig.2 (circles) that this dependence for C_{60} complexes with OMTTF, BEDO-TTF, BEDT-TTF and DBTTF donors ($I_P^{\ \ } - 6.30$, 6.46, 6.70, 6.81 eV, respectively [13]) is really quite linear and is approximated by $hv_{CT} = 0.82 I_P^{\ \ \ } - 3.93$. This dependence enables the estimation of $I_P^{\ \ \ }$ values for other donors from the hv_{CT} values in C_{60} complexes (Fig.2, crosses). The hv_{CT} values for C_{70} complexes (Fig.2, stars) are ~ 0.08 eV lower than those for C_{60} ones with identical donors.

For the donors with equal I_p^v the hv_{CT} values are ~0.6 eV higher in C_{60} complexes in solid state than those in TCNE ones [14]. This fact can be explained by two reasons. C_{60} is a weaker acceptor than TCNE. The E_c values in complexes depend on the distances between ions in excited state therefore the delocalization of the radical anion charge over a large C_{60} sphere results in the decrease of E_c values in C_{60} complexes relatively to TCNE ones.

FIGURE 2. The dependence of $h\nu_{CT}$ vs. I_p^{ν} of the donors for C_{50} and C_{70} complexes (the numeration of the complexes is given according to Table).

XP-spectroscopy shows that the energy of S2p, N1s, Te3d peaks of the donors changes by $0.1-1.6~\rm eV$ relatively to the individual ones. These shifts can be caused not only by CT from the donor to C_{60} but the calibration against the C1s peak since the position of this peak can be different for the donor and the corresponding complex.

Acknowledgements

This work is supported by the Russian Program "Fullerenes and Atomic Clusters" and partially by the Polish grant N 7 T08A 003 12.

References

- 1. Saito G., Teramoto T., Otsuka A., Sugita Y., Ban T., et.al , Synth. Met., 64, 359-368 (1994).
- 2. Konarev D.V., Valeev E.F., Slovokhotov Yu.L., et.al., J.Chem. Res., 12, 442-443 (1997).
- 3. Konarev D.V., Lyubovskaya R.N., Roschupkina O.S., et.al, Russ. Chem. Bull., 46, 32-35(1997).
- 4. Penicaud A., Perez-Benitez A., Gleason R., et.al., J.Am.Chem. Soc., 115, 10392-10393 (1993).
- 5. Konarev D.V., Semkin V.N., Graja A., Lyubovskaya R.N., J. Molecular Structure., accepted.
- 6. Winkler R., Pichler T., Kuzmany H., Z.Phys. B, 96, 39-45 (1994).
- 7. Bagenov A.V., Maksimuk M.Yu., et.al., Izv. Akad. Nauk, Ser. Khim., 6, 1459-1463 (1996).
- 8. Konarev D.V., Zubavichus Y.V., Slovokhotov Yu.L., et.al., Synth. Met., 92, 1-6 (1998).
- 9. Konarev D.V., Valeev E.F., Slovokhotov Yu.L., Shul'ga Yu.M., et al., Synth. Met., 88, 85-87 (1997).
- 10. Pichler T., Winkler R., Kuzmany H., Phys. Rev. B. 49, 15879-15888 (1994).
- 11. Narasimhan L.R., Stoneback D.N., Hebard A.F., et al., Phys. Rev. B, 46, 2591-2594 (1992).
- 12. Kveder V.V., Steinman E.A., et. al., Chem., Phys., 216, 407-415 (1997).
- 13. Lichtenberger D.L., Johnston R.L., Hinkelmann K., et al., J.Am. Chem. Soc., 112, 3302-3307 (1993).
- 14. Kobayashi M., Kinoshita H., Takemoto S., J. Chem. Phys., 36, 457-462 (1962).