The first complex of C_{60} fullerene with bis(ethylenedithio)tetrathiafulvalene radical cation: $C_{60} \cdot (BEDT - TTF \cdot I_3)$

D. V. Konarev,^a N. V. Drichko,^b R. N. Lyubovskaya,^{a*} E. I. Yudanova,^a Yu. M. Shul'ga,^a Ya. V. Zubavichus,^c and V. N. Semkin^b

^aInstitute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation. Fax: +7 (096) 515 3588. E-mail: lyurn@icp.ac.ru bA. F. Ioffe Physical-Technical Institute,

26 ul. Politekhnicheskaya, 194021 St. Petersburg, Russian Federation

^cA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences,

28 ul. Vavilova, 117813 Moscow, Russian Federation.

Fax: +7 (095) 135 5085

The complex of C₆₀ fullerene containing the radical cation of the organic donor, viz., C₆₀ · (BEDT-TTF · I₃), where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene, was synthesized for the first time. Single crystals of the complex were grown in benzonitrile. The crystals of this compound belong to the monoclinic system with a base-centered lattice. The unit cell parameters are as follows: a = 17.419(6), b = 9.997(4), c = 13.499(1) Å, $\beta = 99.00$ (1)°. The IR and electronic spectra of single crystals of the complex have absorption bands characteristic of the BEDT-TTF⁺⁺ radical cation and neutral C₆₀. The ESR spectrum has a signal with g = 2.0074 and $\Delta H_{pp} = 23$ G belonging to BEDT-TTF⁺⁺. The position of the I3d_{5/2} peak in the X-ray photoelectron spectrum confirms the formation of the I₃⁻⁻ anion.

Key words: C_{60} fullerene: bis(ethylenedithio)tetrathiafulvalene; complexes of radical cations; electronic reflection spectra; XPS, IR, and ESR spectra.

A large number of donor-acceptor complexes with C_{60} fullerene have been synthesized,¹ some of which possess superconducting and ferromagnetic properties.^{2,3} However, due to weak acceptor properties of fullerenes most organic donors form neutral complexes with C_{60} . In particular, complexes with tetrathiafulvalene derivatives were prepared, *viz.*, with bis(ethylenedi-thio)tetrathiafulvalene (BEDT--TTF).⁴⁻⁶ dibenzotetrathiafulvalene,⁷ octamethylenetetrathiafulvalene,⁸ tetramethyltetraselenafulvalene,⁹ tetramethylenedithiodimethyltetrathiafulvalene,¹⁰ etc.^{11,12}

It is known that tetrathiafulvalene derivatives are widely used for constructing radical-cation salts, which exhibit metallic and superconducting properties. For example, a series of superconducting radical-cation salts were prepared based on BEDT-TTF: (BEDT-TTF)₂X (X = I_3^- , IBr_2^- , AuI_2^- , ReO_4^- , or $Cu(NCS)_2^-$) and (BEDT-TTF)₄Hg_{2.89}Hal₈ (Hal = Cl or Br).¹³

The C₆₀ and C₇₀ fullerenes form neutral complexes with BEDT-TTF. These complexes were prepared by cocrystallyzation of C₆₀ or C₇₀ and BEDT-TTF from carbon disulfide ((BEDT-TTF)₂C₆₀⁴ and BEDT-TTF \cdot C₇₀ \cdot CS₂⁵), toluene, benzonitrile ((BEDT-TTF)₂C₆₀⁶), or pyridine ((BEDT-TTF)₂C₆₀(Py)₂⁵).

A prerequisite for the manifestation of metallic conductivity or ferromagnetic properties in the complexes is their ionicity.⁸ Previously, we have performed gas-phase intercalation of the $D_k C_{60}(Solv)_x$ compounds (where D is the donor and Solv is the solvent) with iodine to change the neutral state of molecular C_{60} complexes. In the course of intercalation, the solvent was replaced by iodine, which was accompanied by solid-phase oxidation of the donor to the radical-cationic or dicationic state to yield ternary systems $D_k^+ \cdot C_{60} \cdot I_n^ (n > 5).^{14}$ However, the gas-phase intercalation is a diffusion process and the homogeneity of the resulting specimens is difficult to attain.

In the present work, we report the solution synthesis of the first ternary complex $C_{60} \cdot (BEDT - TTF \cdot I_3)$ containing the radical cation (BEDT - TTF⁺).

Results and Discussion

The crystals of the $C_{60} \cdot (BEDT-TTF \cdot I_3)$ compound belong to the monoclinic system with a base-centered lattice. The unit cell parameters are as follows: a =17.419(6) Å, b = 9.997(4) Å, c = 13.499(1) Å, $\beta =$ 99.00(1)°. We performed indexing of all observed reflections. No systematic deviations from the monoclinic base-centered lattice were observed. Thus, there were three possible space groups, *viz.*, *C2*, *Cm*, or *C2/m*. In these unit cells, each fullerene molecule can have six neighboring C₆₀ molecules located at approximately equal

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1970-1973, October, 1999.

distances. In this case, two C_{60} molecules with the distances between their centers equal to 10.00 Å (the translational vectors are 0 ± 1.0) and four adjacent C_{60} molecules with the distances between their centers equal to 10.04 Å (the translational vectors are $\pm0.5\pm0.50$) can lie in the *ab* plane (Fig. 1). Hence, it can be suggested that the fullerene molecules form closely packed, slightly distorted layers parallel to the *ab* plane; the distances between these layers are 13.5 Å. The BEDT-TTF⁺⁺ radical cations and the I_3^- anions can occupy interlayer cavities. These layered structures are typical of C_{60} complexes with tetrathiafulvalenes. In these structures, the donor and solvent molecules are located between closely packed layers of the fullerene molecules.⁸

The IR spectrum of $C_{60} \cdot (BEDT-TTF \cdot I_3)$ has absorption bands at 1429 and 1182 cm⁻¹ characteristic of C_{60} (Fig. 2). The positions of these bands are identical with those in the spectrum of the initial fullerene, which is indicative of the absence of noticeable charge transfer to the C_{60} molecule. The spectrum has also absorption bands at 1384, 1289, 1021, 927, 899, 882, and 808 cm⁻¹ characteristic of the BEDT-TTF⁺⁺ radical cation in the BEDT-TTF · I₃ radical-cation salt (KBr pellets).¹⁵ The intensity ratio and the positions of these absorption

Fig. 1. Scheme of the arrangement of C_{60} molecules in the unit cell of $C_{60} \cdot (BEDT--TTF \cdot I_3)$. The C_{60} molecules are represented by balls. The crystallographic directions and the shortest distances between the centers of the C_{60} molecules are indicated by thin lines.

Fig. 2. IR spectrum of single crystals of $C_{60} \cdot (BEDT-TTF \cdot I_3)$. The absorption bands of the BEDT-TTF \cdot radical cation and C_{60} fullerene are marked.

bands differ somewhat from those observed in the spectrum of BEDT-TTF $\cdot I_3$,¹⁵ which may be associated with a change in the conformation of the BEDT-TTF⁺⁺ radical cation upon coordination with the spherical fullerene molecule. Changes in the conformation of the initially planar tetrathiafulvalene molecules were observed in all C₆₀ complexes studied so far.⁴⁻¹⁰

1947

The electronic polarized reflection spectra of single crystals of $C_{60} \cdot (BEDT-TTF \cdot I_3)$ were measured from the developed crystal face using three polarizations, *viz.*, two mutually perpendicular polarizations in the spectral range of 4.5–1.1 eV and one intermediate polarization (at an angle of 45° to polarizations *I* and *3*) in the range of 4.5–1.35 eV (Fig. 3). The polarized reflection spectra of the crystal of pure C_{60} in the region of 4.5–1.1 eV (the spectrum is isotropic and coincides with the published data¹⁶) and of the crystal of the (BEDT-TTF)₂I₃ radical-cation salt¹⁷ were used for comparison.

The reflection spectrum of $C_{60} \cdot (BEDT-TTF \cdot I_3)$ in three measured polarizations has peaks at 4.2, 3.6, 2.5, and 1.1 eV and a relatively weak peak at 1.96 eV, whose intensity is substantially lower in polarization 2(see Fig. 3). It can be seen that the reflection spectra of $C_{60} \cdot (BEDT - TTF \cdot I_3)$ are superpositions of the spectra of pure C_{60} and the BEDT - TTF⁺ radical cation. In the spectrum of the complex, the positions of the peaks of fullerene (at 4.3 and 3.5 eV) are close to those in the spectrum of pure C_{60} , but in the former case, the peaks are noticeably broadened. Previously, broadening of the bands of C₆₀ has been observed upon intercalation of fullerene complexes with iodine.14 It is known that the reflection band at 2.4 eV in the spectrum of C_{60}^{16} is associated primarily with the intermolecular LUMO-HOMO electron transfer between adjacent C₆₀ molecules.¹⁸ Hence, the intensity of this absorption should depend on the distance between the fullerene molecules. For example, this absorption band is absent in the spectra of complexes with isolated C_{60} molecules ¹⁹ or in the spectra of solutions of C_{60} .²⁰ In the case under consideration, the intensities of the bands at 2.5 eV in

Fig. 3. Electronic reflection spectra of single crystals of $C_{60} \cdot (BEDT-TTF \cdot I_3)$ measured from the developed face in three polarizations (1, 2, and 3) and the reflection spectrum of the crystal of the initial C_{60} (4).

the spectra of $C_{60} \cdot (BEDT-TTF \cdot I_3)$ and pure C_{60} are approximately equal, *i.e.*, the distances between the adjacent C_{60} molecules in the $C_{60} \cdot (BEDT-TTF \cdot I_3)$ complex and in the crystals of initial C_{60} have similar values, which is consistent with the X-ray powder data.

A weak polarized band in the reflection spectrum of $C_{60} \cdot (BEDT-TTF \cdot I_3)$ at 1.96 eV can be assigned to symmetry-forbidden electron transitions in C_{60} because the absorption spectrum of the initial C_{60} also shows weak absorption at 2 eV associated with symmetry-forbidden LUMO-HOMO transitions.¹⁸ An increase in the intensity of this band compared to that of the initial C_{60} may be due to distortion of the icosahedral symmetry of the C_{60} molecules in the complex upon coordination with the BEDT-TTF⁺⁺ radical cation.

A reflection band is observed at 1.1 eV, which can be assigned to BEDT-TTF⁺⁺. This band is weakly polarized and the highest intensity is observed in polarization I (see Fig. 3). An analogous band was observed in the polarized spectra of single crystals of (BEDT-TTF)₂I₃.¹⁷

Reflection bands at 2.8–3.0 eV characteristic of the I_3^- anion¹⁷ are absent in the spectrum of $C_{60} \cdot (BEDT-TTF \cdot I_3)$. Probably, these bands either are masked by more intense reflection bands of C_{60} or are not manifested in the measured polarizations.

The half-widths and the positions of the C1s, S2p, and $13d_{5/2}$ peaks in the X-ray photoelectron spectra of $C_{60} \cdot (BEDT-TTF \cdot I_3)$ are given in Table 1. On going from BEDT-TTF to $C_{60} \cdot (BEDT-TTF \cdot I_3)$, a positive shift of the S2p binding energy (E_b) is observed, which corresponds to a decrease in the electron density on the S atoms on going from the neutral BEDT-TTF compound to the radical-cationic state in $C_{60} \cdot (BEDT-TTF \cdot I_3)$.

The position of the $13d_{5/2}$ peak with $E_b = 619.4 \text{ eV}$ in the compound under study is close to that for (BEDT-TTF)₂ · I₃.²¹ This is indicative of the fact that the specimen under study contains iodine as the I₃⁻ anion. The I⁻ anion is characterized by a substantially lower bond energy, for example, $E_b = 617.7 \text{ eV}$ in the compound (Ph₄P⁺)₂C₆₀ · (I⁻).²³

The ESR spectrum of C_{60} (BEDT-TTF · I₃) (at room temperature) has an intense signal with g = 2.0074and $\Delta H_{pp} = 23$ G corresponding to the BEDT-TTF · + radical cation. As the temperature decreases, the position and the width of the signal remain virtually un-

Table 1. Binding energies (\mathcal{E}_b) and half-widths (Δ) of the analytical XPS lines

Compound	E _b /eV		 ∆/eV			Ref-
	S2p	13d _{5/2}	Cls	S2p	13d _{5/2}	erence
C60 · (BEDT-TTF ·	1)164.1	619.4	2.1	2.6	2.3	
(BEDT-TTF), · I	163.8	619.0	2.0	2.4	2.1	21
BEDT-TTF	163.6		1.9	2.4		22
$(Ph_4P)_2C_{60} \cdot I$	-	617.7	2.1		2.2	23

changed (g = 2.0074 and $\Delta H_{pp} = 20$ G at 77 K). However, the (BEDT-TTF)₂I₃ salts are characterized by noticeable narrowing of the ESR signal as the temperature decreases. For example, the β -(BEDT-TTF)₂I₃ salt gives the ESR signal with $\Delta H_{pp} = 18-24$ G (300 K) and $\Delta H_{pp} = 2$ G (5 K) and the θ -(BEDT-TTF)₂I₃ salt gives the ESR signal with $\Delta H_{pp} = 60-80$ G (300 K) and $\Delta H_{pp} = 28$ G (108 K).¹³ The initial BEDT-TTF · I_{3.4} compound is characterized by the ESR signal with g =2.0043 and $\Delta H_{pp} = 25$ G (300 K), whose parameters also change as the temperature decreases (g = 2.0059 and ΔH = 10 G at 77 K).

The integrated intensity of the signal in the spectrum of $C_{60} \cdot (BEDT - TTF \cdot I_3)$ increases by a factor of 2.2 as the temperature decreases from 300 to 77 K, which is attributable to localization of the electron on the BEDT - TTF⁺⁺ radical cation.

The conductivity of $C_{60} \cdot (BEDT-TTF \cdot I_3)$ is $2 \cdot 10^{-4}$ Ohm⁻¹ cm⁻¹ (pressed pellets). This value is two orders of magnitude larger than the conductivity of the (BEDT-TTF)₂C₆₀ complex (10^{-6} Ohm⁻¹ cm⁻¹) measured under the same conditions. The low conductivity of the compound under consideration is apparently due to the integer charge on the BEDT-TTF molecule (+1) and is typical of other BEDT-TTF radical-cation salts with complete charge transfer.¹³

Therefore, we prepared the first ternary C_{60} complex, viz., $C_{60} \cdot (BEDT-TTF \cdot I_3)$, containing the BEDT-TTF⁺⁺ radical cation. In this compound, the C_{60} fullerene molecules are neutral. Consequently, the BEDT-TTF⁺⁺ radical cations are bound to the C_{60} molecules apparently through van der Waals forces.

The proposed procedure for the synthesis of C_{60} complexes using radical-cation salts of tetrathiafulvalenes allows the preparation of ternary C_{60} compounds containing radical cations of tetrathiafulvalenes and counterions. Of prime importance is the fact that these compounds can be prepared as single crystals. High polarizability of the C_{60} molecules can strongly affect the conducting and magnetic properties of these compounds.

Experimental

The starting compound BEDT-TTF I_x ($x \approx 3.4$) was prepared by oxidation of BEDT-TTF (30 mg, 0.077 mmol) in benzonitrile (50 mL) with an excess of I_2 (118 mg, 0.466 mmol) on heating. After cooling of the solution, the finely crystalline precipitate that formed was filtered off, washed with acetone, and dried in air. Found (%): I, 52.3; S, 29.17. BEDT-TTF $I_{3.4}$. Calculated (%): I, 52.7; S, 31.2.

The C_{60} (BEDT-TTF $\cdot I_3$) compound was prepared in quantitative yield by cocrystallization of stoichiometric amounts of BEDT-TTF $\cdot I_{3,4}$ and C_{60} in benzonitrile. The resulting crystals were washed with acetone and dried in air. The compound was obtained as rhombic crystals with dimensions of up to 0.5 mm. Found (%): C, 56.4; H, 0.74; I, 26.20; S, 17.14. $C_{70}H_8I_3S_8$. Calculated (%): C, 56.7; H, 0.53; I, 25.6; S, 17.14. The IR transmission spectrum of single crystals of

The TR transmission spectrum of single crystals of $C_{60} \cdot (BEDT-TTF \cdot I_3)$ was measured in the region of 650-

 4000 cm^{-1} on a Perkin-Elmer 1760 Fourier-transform IR spectrometer equipped with a microscope and an MST detector.

The electronic reflection spectra of single crystals were measured on a double-beam microspectroreflectometer equipped with a Glan—Thompson prism as the polarizer; the diameter of the probe was 25 μ m; the spectral width of the aperture $\Delta \lambda =$ 2 nm. Quartz and SiC crystals were used as the standards. The reflection coefficient was measured using the best reflecting region of the surface.

The samples for X-ray photoelectron spectra were prepared according to a procedure reported previously.²⁴ The spectra (Mg-K α radiation, $h\nu = 1253.6$ eV) were calibrated using the C1s peak (285.0 eV).

The X-ray powder data were obtained on an automated DRON-3 diffractometer (Cu-K α radiation, $\lambda = 1.5418$ Å, graphite monochromator). The measurements were performed in the continuous scanning mode at a rate of 4 deg min⁻¹. The sample was applied to a flat glass holder from a dispersion in heptane. A total of 28 reflections were obtained in the 4--64° range. The initial indexing of the unit cell was carried out using the TREOR program.²⁵ The obtained parameters were refined using the PIRUM program.²⁶

This work was financially supported by the Russian Program "Fullerenes and Atomic Clusters" and by the Russian Foundation for Basic Research (Project No. 98-02-18303).

References

- D. V. Konarev and R. N. Lyubovskaya, Usp. Khim. 1999.
 68, 23 [Russ. Chem. Rev., 1999, 68, 19 (Engl. Transl.)].
- P. W. Stephens, D. Cox, J. W. Lauher, L. Mihaly, J. B. Wiley, P.-M. Allemand, A. Hirsch, K. Holczer, Q. Li, J. D. Thompson, and F. Wudl, *Nature (London)*, 1992, 355, 331.
- 3. M. Ricco, M. Bisbiglia, R. Derenzi, and F. Bolzoni, Solid State Commun., 1997, 101, 413.
- 4. A. Izuoka, T. Tachikawa, T. Sugawara, Y. Suzuki, M. Konno, Y. Saito, and H. Shinohara, J. Chem. Soc., Chem. Commun., 1992, 1472.
- 5. D. V. Konarev, N. V. Drichko, V. N. Semkin, Yu. M. Shul'ga, A. Graja, and R. N. Lyubovskaya, *Electronic Properties of Novel Materials - Progress in Molecular Nanostructures*, Eds. H. Kuzmany, J. Fink, M. Mehring, and S. Roth, American Institute of Physics, Woodbury, New York, 1998, 357.
- E. E. Laukhina, I. Majchrzak, W. Ciesielski, and A. Graja, Polish J. Chem., 1993, 67, 2251.

- D. V. Konarev, Y. V. Zubavichus, Yu. L. Slovokhotov, Yu. M. Shul'ga, V. N. Semkin, N. V. Drichko, and R. N. Lyubovskaya, Synth. Met., 1998, 92, 1.
- G. Saito, T. Teramoto, A. Otsuka, Y. Sugita, T. Ban, M. Kusunoki, and K.-I. Sakaguchi, Synth. Met., 1994, 64, 359.
- S. V. Konovalikhin, O. A. D'yachenko, G. V. Shilov, N. G. Spitsina, K. V. Van, and E. B. Yagubskii, *Izv. Akad. Nauk, Ser. Khim.*, 1997, 1480 [*Russ. Chem. Bull.*, 1997, 46, 1415 (Engl. Transl.)].
- D. V. Konarev, E. F. Valeev, Yu. L. Slovokhotov, Yu. M. Shul'ga, O. S. Roschupkina, and R. N. Lyubovskaya, Synth. Met., 1997, 88, 85.
- 11. J. Llacay, J. Tarres, J. Veciana, and C. Rovira, Synth. Met., 1995, 70, 1453.
- P. Wang, W.-J. Lee, I. Scherbakova, M. P. Cava, and R. M. Metzger, Synth. Met., 1994, 64, 319.
- R. N. Lyubovskaya, D. V. Konarev, E. I. Yudanova, O. S. Roschupkina, Yu. M. Shul'ga, V. N. Semkin, and A. Graja, Synth. Met., 1997, 84, 741.
- 14. J. M. Williams, J. R. Ferraro, R. J. Thorn, K. D. Carlson, U. Geiser, H. H. Wang, A. M. Kini, and M.-H. Whangbo, Organic Superconductors (Including Fullerenes). Synthesis, Structure, Properties and Theory, Prentice Hall, Englewood Cliffs, New Jersey, 1992.
- M. E. Kozlov, K. L. Pohodnia, and N. M. Yurchenko, Spectrochim. Acta, 1989, 45A, 437.
- 16. P. N. Saeta, B. I. Greene, A. R. Kortan, N. Kopylov, and F. A. Thiel, *Chem. Phys. Lett.*, 1992, **190**, 184.
- R. M. Vlasova, S. Ya. Priev, V. N. Semkin, E. B. Yagubskii, L. S. Agroskin, and V. K. Petrov, *Fiz. Tverd. Tela*, 1990, 32, 448 [Sov. Phys.-Sol. Stat., 1990, 32 (Engl. Tansl.)].
- M. Ichida, A. Nakamura, H. Shinohara, and Y. Saitoh, Chem. Phys. Lett., 1998, 289, 579.
- D. V. Konarev, R. N. Lyubovskaya, N. V. Drichko, V. N. Semkin, and A. Graja, *Synth. Met.*, 1999, 103, 2466.
- H. J. Byrne, in *Physics and Chemistry of Fullerenes and Derivatives*, Eds. H. Kuzmany, J. Fink, M. Mehring, and S. Roth, World Scientific, Singapore, 1995, 183.
- 21 D. V. Konarev, R. N. Lyubovskaya, and Yu. M. Shul'ga, Dokl. Akad. Nauk, 1996. 346, 490 [Dokl. Chem., 1996 (Engl. Transl.)].
- 22. Yu. M. Shul'ga, V. I. Rubtsov, V. N. Vasilets, A. S. Lobach, N. G. Spitsyna, and E. B. Yagubskii, *Synth. Met.*, 1995, **70**, 1381.
- 23. Yu. M. Shul'ga, N. G. Spitsina, and E. B. Yagubskii, *Dokl. Akad. Nauk*, 1996, **348**, 502 [*Dokl. Chem.*, 1996 (Engl. Transl.)].
- 24. V. I. Rubtsov and Yu. M. Shul'ga, Zh. Eksp. Teor. Fiz., 1993, 103, 2065 [JETP Lett., 1993, 103 (Engl. transl.)].
- P.-E. Werner, L. Erikson, and M. Westdahl, J. Appl. Crystallogr., 1985, 18, 367.
- 26. P.-E. Werner, Arkiv Kemi, 1969, 31, 513.

Received March 5, 1999