

Published on Web 06/26/2002

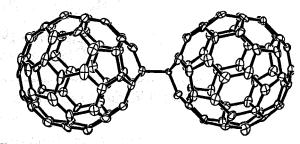
The Reversible Formation of a Single-Bonded $(C_{60}^-)_2$ Dimer in Ionic Charge Transfer Complex: $Cp_2^*Cr_1^*C_{60}(C_6H_4Cl_2)_2$. The Molecular Structure of $(C_{60}^-)_2$

Dmitri V. Konarev,*,† Salavat S. Khasanov,‡ Akihiro Otsuka, and Gunzi Saito*

Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Received February 19, 2002

Fullerenes have two most interesting features: namely, the ability to be reduced to the anions from 1- to $6-^1$ and to form covalent bonds between fullerene molecules in a charged state, under pressure or irradiation.²


By now the quasi-one-dimensional bridged C_{60}^- , the quasi-one-dimensional bridged C_{60}^{3-} as well as the two-dimensional bridged C_{60}^{4-} structures have been discovered in fullerene salts with alkali metals. 2 C_{60} in the neutral state forms a $(C_{60})_2$ dimer. 3a The $(C_{60}^-)_2$ dimers are only found in the metastable phase of Rb· C_{60}^{3b} and in ionic Tol₂Cr· C_{60} (Tol₂Cr = bis(toluene)chromium)^{3c}, the structures of which were studied by X-ray powder diffraction. The calculations show that the single-bonded $(C_{60}^-)_2$ dimer with C_{2h} symmetry is the most stable configuration.

Decamethylmetallocenes ($Cp*_2M^{II}$) have a strong donor ability and can be used for the preparation of ionic complexes with fullerenes. As a result $Cp*_2Co$ is suitable for the preparation of a dianionic salt of C_{60} , 5a and $Cp*_2Ni$ yields the ionic $Cp*_2Ni \cdot C_{60} \cdot CS_2$. In all these complexes, the fullerene species exist in a monomeric form. In this report we describe the reversible formation of a single-bonded (C_{60}^{-})₂ dimer in the ionic complex of C_{60} with decamethylchromocene ($Cp*_2Cr$), the molecular structure of which was first determined by the X-ray diffraction on a single crystal.

 $Cp*_2Cr*C_{60}(C_6H_4Cl_2)_2$ (1) was obtained under anaerobic conditions by the diffusion of hexane in 1,2-dichlorobenzene ($C_6H_4Cl_2$) containing C_{60} and an equimolar amount of $Cp*_2Cr$.

The IR spectrum of 1 at room temperature (RT) shows the ionic ground state of the complex. In 1 the $F_{1u}(4)$ C_{60} mode, which is the most sensitive to the charge transfer to fullerene molecule, shifts by 36 cm^{-1} relative to the starting C_{60} (1429 cm⁻¹) to 1393 cm⁻¹. Previously studied Rb+•C₆₀•- salt has a position of F_{1u}(4) mode close to this at 1392 cm⁻¹.6a Three other C_{60} $F_{1u}(1-3)$ modes (527, 577, and 1181 cm⁻¹, respectively) remain at their position; however, the intensity of the $F_{1u}(2)$ mode is essentially increased relative to that of $F_{1u}(1)$ mode. The bands at 437, 1021, 1380, 1434, and 1474 cm⁻¹ are ascribed to Cp*₂Cr. The shift of the band of neutral Cp*₂Cr from 418 to 437 cm⁻¹ in 1 shows the formation of Cp*₂Cr⁺.6b The band with the maximum at 1080 nm is observed in the NIR spectrum of 1 measured in KBr pellet. This band is characteristic of C₆₀*- radical anions. The absence of any additional bands in the IR spectrum which usually appear with the dimerization or polymerization of fullerides^{6c} indicates the monomeric state of C₆₀*at RT.

The RT structure of 1^7 contains orientationally disordered fullerene molecules but well-ordered $Cp*_2Cr^+$ units. The $C_{60}^{\bullet-}$ forms the uniform zigzag chains in 1 with the shortest center-to-center distance of about 10.11 Å.

Figure 1. ORTEP drawing of the structure of $(C_{60}^{-})_2$ dimer in 1 at 100 K.

Under cooling, a reversible structural transformation takes place at around 220 K, accompanied with the unit cell multiplication. The low-temperature (LT) structure of 1^7 was studied at 100 K. In contrast to the RT configuration, the C_{60} forms single-bonded $(C_{60})_2$ dimers (Figure 1). Even though a disorder in the fullerene part was still observed, the structure could be solved correctly. The disordered $(C_{60})_2$ dimers are fixed in two orientations linked one to another by the rotation around the long axis of a dumbbell $(C_{60})_2$ with an angle of about 142°. The occupancy factors are 0.75 and 0.25.

The $(C_{60}^-)_2$ configuration has C_{2h} symmetry, as was predicted from the calculations.⁴ The average bond angle of 109° for sp³ carbons is close to the tetrahedral geometry. The length of the 6–6 and 6–5 bonds (excluding the bonds with sp³ carbons) are averaged to 1.391 (21) and 1.445 (21) Å, respectively. The length of the intercage C–C bond (1.597(7) Å) is longer than that for the normal C–C bond between sp³ carbons (1.541(3) Å)⁸ but close to the predicted one (1.618 Å).^{4b} The intercage center-to-center distance in the dimer is equal to 9.28 Å. For comparison, in the dimer phase of Rb·C₆₀ this distance was found to be \sim 9.34 Å.^{3b}

One can expect that the single-bonded $(C_{60}^-)_2$ dimer in 1 is less stable than the neutral $(C_{60})_2$ dimer where double covalent bonding of a noticeably shorter length $(1.575(7) \text{ Å})^{3a}$ occurs through [2 + 2] cycloaddition. Indeed, the dissociation temperature of the charged $(C_{60}^-)_2$ dimer, 200–220 K, is essentially lower than that of the neutral $(C_{60})_2$ dimer, 423–448 K^{3a}. The estimated intercage C–C bond dissociation energy of 63 \pm 4 kJ mol⁻¹ also indicates a weakness of this bond in the $(C_{60}^-)_2$ dimer.

The whole packing of the complex may be described as a honeycomb network in which $(C_{60}^-)_2$ dimers are held together by $Cp^*_2Cr^+$ cations to form large continuous channels (Figure 2). The channels pass along the [101] direction and are occupied by C_6H_4 - Cl_2 solvent molecules. The dimers have several shortened contacts with each other in the columns along the [101] direction (the shortest distance = 3.266(6) Å) and C_{60} center-to-center distance between adjacent dimers = 9.91 Å) and with $Cp^*_2Cr^+$ (the shortest distance = 3.049(6) Å). It should be noted that the dimer [101] columns are the result of the dimerization of the $C_{60}^{\bullet-}$ uniform zigzag chains of the RT structure.

^{*} Corresponding authors: konarev@icp.ac.ru and saito@kuchem.kyoto-u.ac.jp. † On leave from Institute of Problems of Chemical Physics RAS, Chernogolovka,

Moscow region 142432, Russia.

† On leave from Institute of Solid-State Physics RAS, Chernogolovka, Moscow region, 142432, Russia.

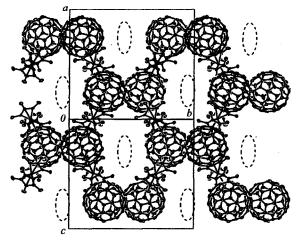
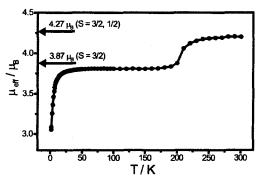



Figure 2. The crystal structure of Cp*2Cr·C60(C6H4Cl2)2 (1) at 100 K viewed down the [101] direction. The dimers are shown in their major orientation. The dashed ellipses show the channels containing the C₆H₄Cl₂ molecules, which are not shown.

Figure 3. The dependence of the magnetic moment (μ_{eff}) vs temperature for polycrystalline 1 between 300 and 1.9 K. The behavior is reversible.

The magnetic susceptibility of 1 is measured in the 300-1.9 K range (Figure 3). The magnetic moment is equal to 4.20 μ_B at RT. Thus, both spins from $Cp_2^*Cr^+$ $(S = \frac{3}{2})$ and C_{60}^{--} $(S = \frac{1}{2})$ contribute to the magnetic susceptibility (the spin-only value expected for a noninteracting $S = \frac{3}{2}, \frac{1}{2}$ system is 4.27 μ_B). The steplike and reversible change of the magnetic moment of 1 from 4.20 to 3.88 $\mu_{\rm B}$ is detected in the 230–200 K range, below which the magnetic moment is defined only by the spins from Cp*₂Cr⁺ (the expected value for the noninteracting $S = \frac{3}{2}$ system is 3.87 $\mu_{\rm B}$). Thus, the change of the magnetic moment of 1 clearly indicates the disappearance of the contribution of C₆₀*- spins consistent with the formation of the diamagnetic $(C_{60}^{-})_2$ dimers. This situation is similar to that in the ionic Tol₂Cr·C₆₀ in which the dimerization of C₆₀• at 250 K results in a step decrease of the magnetic moment from 2.5 to 1.72 $\mu_{\rm B}$.3c The decrease of the magnetic moment of 1 at a temperature lower than 30 K (Figure 3) indicates the weak antiferromagnetic interaction between Cp*2Cr+ spins. The spin ordering, however, is not observed down to 1.9 K.

1 is EPR-silent at RT. By analogy with ionic $Cr^{III}TPP^{+} \cdot (C_{60}^{\bullet-})$ $(THF)_3$ (CrTPP = tetraphenyl-21*H*,23*H*-porphinato chromium, and THF = tetrahydrofuran) which is also EPR-silent^{9a} we can deduce that the interaction of C₆₀ with Cp*₂Cr⁺ leads to an EPR-silent, integral-spin species via a magnetic coupling. By cooling the sample a new signal appears at 220-200 K in the EPR spectrum. This signal is asymmetric with $g_{\perp} = 3.974$ with $\Delta H = 7.0$ mT and $g_{\parallel} =$ 2.013 with $\Delta H = 5.5$ mT at 4 K and is ambiguously ascribed to $Cp*_2Cr^+$ with $S = \frac{3}{2}$ ground state ($g_{\perp} = 4.02$ (1) and $g_{||} = 2.001$ (1) for $(Cp*_2Cr^+)(PF_6^-)$ in the solid state^{6b}). The parameters

(g-factor and half-width) of the EPR signal from Cp*2Cr+ only weakly depend on the temperature between 4 and 200 K.

Since the appearance of the EPR signal from Cp*2Cr+ and the disappearance of the magnetic moment ascribed to C₆₀*- occur simultaneously, we can conclude that the formation of diamagnetic (C₆₀⁻)₂ dimers breakdowns the magnetic coupling between C₆₀⁻ and Cp*2Cr+ and leads to the formation of odd-spin EPR-active species containing paramagnetic Cp*₂Cr⁺ and diamagnetic (C₆₀⁻)₂. A somewhat similar effect has been observed in the ionic $TDAE^{-+} \cdot C_{60}^{--}$ (TDAE = tetrakis(dimethylamino)ethylene) in which the polymerization of C₆₀*- under pressure (>10 kbar) results in the appearance of the EPR signal from TDAE++.9b

In conclusion, a new ionic complex of C₆₀ with decamethylchromocene: Cp*2Cr·C60(C6H4Cl2)2 (1) is obtained as single crystals. The ionic ground state of the complex is confirmed by the IR- and NIR-spectra. The fullerides are monomeric in 1 at RT, whereas they form single-bonded (C₆₀⁻)₂ dimers at 100 K. The length of the intercage C-C bond is 1.597(7) Å, and the interfullerene distance is equal to 9.28 Å. The phase transition resulting in the C₆₀*- dimerization is observed in the 220-200 K range, the transformation being reversible. The transition is accompanied by changes in the unit cell parameters, the decrease of the magnetic moment from 4.20 μ_B (S = $^3/_2$, $^1/_2$) to 3.88 μ_B (S = ³/₂), and the appearance of an EPR signal from Cp*₂Cr⁺, simultaneously. The two latter effects are the result of the quenching of magnetism by the formation of diamagnetic $(C_{60}^{-})_2$ dimers. The (C₆₀⁻)₂ dimers are also formed in similar ionic Tol₂Cr⋅C₆₀ with short distances between the centers of C₆₀*- (9.97 Å).3c Thus, the C₆₀ can dimerize reversibly in the ionic complexes in which the distances between C_{60} are rather short.

Acknowledgment. The work was supported by the COE Research on Elemental Science No. 12CE2005 and JSPS.

Supporting Information Available: Crystallographic data and crystal structure refinement of 1 at 300 and 100 K, synthesis and characterization for 1 including IR, UV-visible-NIR, EPR, and SQUID (PDF). This material is available free of charge via Internet at http://pubs.acs.org.

References

- Reed, C. A.; Bolskar, R. D. Chem. Rev. 2000, 100, 1075–1120.
 Prassides, K. In The Physics of Fullerenes-based and Fullerene-related Materials; Andreoni, W., Ed.; Kluwer Academic Publishers: Netherlands, 2000; pp 175-20;
- (a) Wang, G.-W.; Komatsu, K.; Murata, Y.; Shiro, M. *Nature* **1997**, *387*, 583–586. (b) Oszlanyi, G.; Bortel, G.; Faigel, G.; Granasy, L.; Bendele, G.; Stephens, P. W.; Forro, L. *Phys. Rev. B* **1996**, *54*, 11849–11852. (c) Hönnerscheid, A.; Willen, L.; Jansen, M.; Rahmer, J.; Mehring, M. J. Chem. Phys. **2001**, 115, 7161–7165.
- (a) Kürti, J.; Németh, K. Chem. Phys. Lett. 1996, 256, 119-125. (b) Lee. (a) Kill, 7, Park, S. S.; Suh, Y., Yamabe, T.; Osawa, E.; Lüthi, H. P.; Gutta, P.; Lee, C. J. Am. Chem. Soc. **2001**, 123, 11085—11086.
- (a) Boyd, P. D. V.; Bhyrappa, P.; Paul, P.; Stinchcombe, J.; Bolskar, R. D.; Sun, Y.; Reed, C. A. J. Am. Chem. Soc. 1995, 117, 2907–2914. (b) Wan, W. C.; Liu, X.; Sweeney, G. M.; Broderick, W. E. J. Am. Chem. Soc. **1995**, 117, 9580-9581.
- (a) Picher, T.; Winkler, R.; Kuzmany, H. Phys. Rev. B 1994, 49, 15879-15889. (b) Robbins, J. L.; Edelstein, N.; Spencer, B.; Smart, J. C. J. Am. Chem. Soc. 1982, 104, 1882–1893. (c) Dresselhaus, M. S.; Dresselhaus, G. In Fullerene Polymers and Fullerene Polymer Composites; Eklund,
- G. In Futurene Polymers and Futurene Polymer Composites; Eklund, P. C., Rao, A. M., Eds.; Springer-Verlag; Berlin, 1999; pp 1–58. (7) Crystallographic data: (1) 300 K: $C_{92}H_{38}Cl_4Cr_1$, black, monoclinic, C2/c, c, a = 23.167(5) Å, b = 20.983(5) Å, c = 14.609(2) Å, β = 123.415(8)°, V = 5928.(2) Å³, Z = 4, ρ_{calc} = 1.498 g·cm⁻³. (2) 100 K: $C_{368}H_{152}Cl_1C_{CL_4}$, monoclinic, P21, a = 22.973(1) Å, b = 20.785(1) Å, c = 24.747(1) Å, β = 106.387(3)°, V = 11247.7(9) Å³, Z = 2, ρ_{calcd} = 1.579 g·cm⁻³. $R(F_0)$ = 0.051, $WR(F_0^2)$ = 0.147, and GOF = 1.013
- (8) Kennard, O. In CRC Handbook of Chemistry and Physics; Weast, R. C., Ed.; CRC Press: Boca Raton, Florida, 1987; p F106.
- Khemani, K. C.: (a) Pénicaud, A.; Hsu, J.; Reed, C. A.; Koch, A.; Khemani, K. C.; Allemand, P.-M.; Wudl, F. J. Am. Chem. Soc. 1991, 113, 6698-6700. (b) Mizoguchi, K.; Machino, M.; Sakumoto, H.; Kawamoto, T.; Omerzu, A.; Mihailovic, D. Synth. Met. 2001, 121, 1778-1779.

JA0202614