УДК 593.194;547.435

Комплексы фуллеренов с дитиокарбаматами двухвалентных металлов: структура, магнитные свойства и фотопроводимость

Д. В. Конарев, $a \star C$. С. Хасанов, f Д. В. Лопатин, f В. В. Родаев, f Р. Н. Любовская

^а Институт проблем химической физики Российской академии наук, Российская Федерация, 142432 Черноголовка Московской обл., просп. Акад. Семенова, 1. Факс: (496) 522 1852. E-mail: konarev@icp.ac.ru

⁶ Институт физики твердого тела Российской академии наук, Российская Федерация, 142432 Черноголовка Московской обл. E-mail: khasanov@issp.ac.ru

⁶ Тамбовский государственный университет, Российская Федерация, 392000 Тамбов. E-mail: lopatin@tsu.tmb.ru

Синтезирована серия комплексов фуллеренов C_{60} и C_{70} с дитиокарбаматами металлов $\{M^{II}(R_2dtc)_2\} \cdot C_m \ (m = 60 \ или \ 70)$ и дитиокарбаматами металлов, координационно связанными с азотсодержащими лигандами (L), $\{M^{II}(R_2dtc)_2)_x \cdot L\} \cdot C_{60}$ (x = 1 и 2), где $M = Cu, Zn, Cd, Hg, Mn, Fe; R = Me, Et, Pr^n, Pr^i, Bu^n; L - 1,4-диазабицикло[2.2.2] октан$ (DABCO), N, N'-диметилпиперазин, гексаметилентетраамин. Форма молекул дитиокарбаматов стерически хорошо соответствует сферической форме С₆₀, что приводит к эффективному взаимодействию их л-систем. Полученные соединения имеют слоистую или трехмерную упаковку молекул фуллеренов. Дитиокарбаматы железа(п) и марганца(п) в комплексах C_{60} находятся в высокоспиновом состоянии (S = 2 и 5/2). Магнитная восприимчивость $\{M^{II}(Et_2dtc)_2\}_2 \cdot C_m (M = Fe и Mn, m = 60 или 70)$ в интервале температур 200—300 K описывается законом Кюри—Вейса с $\Theta = -250$ и -96 K с максимумами при 110 и 46 К соответственно, что указывает на сильное антиферромагнитное взаимодействие спинов M^{II} . Константы Вейса для комплексов [$\{M^{II}(Et_2dtc)_2\}_2 \cdot DABCO]$ · \cdot C₆₀ \cdot (DABCO)₂ (M = Fe и Mn) составляют 1.7 и 0.3 К. Магнитный момент комплексов Fe и Mn незначительно увеличивается при температуре ниже 50 и 35 К соответственно, что указывает на ферромагнитное взаимодействие спинов M^{II} в $\{M^{II}(Et_2dtc)_2\}_2$. • DABCO. Монокристаллы комплексов имеют низкую темновую проводимость $10^{-10} - 10^{-11} \, \mathrm{Cm} \cdot \mathrm{cm}^{-1}$, облучение их видимым светом приводит к увеличению фототока на 2—3 порядка. Фотогенерация свободных носителей заряда реализуется в комплексах как за счет фотовозбуждения дитиокарбамата металла (Cu^{II}(Et₂dtc)₂), так и посредством переноса заряда с дитиокарбамата металла ($M^{II}(Et_2dtc)_2$, M = Zn и Cd) на C_{60} .

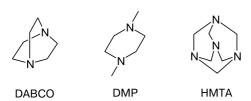
Ключевые слова: донорно-акцепторные комплексы, фуллерен C_{60} , дитиокарбаматы металлов, кристаллическая структура, магнитные свойства, фотопроводимость.

В настоящее время донорно-акцепторные комплексы фуллеренов интенсивно изучаются в связи с тем, что они обладают интересными оптическими и магнитными свойствами $^{1-3}$. Комплексы фуллеренов получены с донорными молекулами различных классов, таких как ароматические углеводороды $^{4-6}$, тетратиафульвалены $^{7-9}$, амины 10,11 , металлопорфирины $^{12-14}$, металлоцены 15 и др. 1,8,15 . Тетрафенил- и октаэтилпорфиринаты металлов образуют с фуллеренами обширный класс соединений, имеющих как нейтральное, так и ионное основное состояние 12-15. Такие комплексы могут быть модифицированы введением азотсодержащих лигандов (L) или катионов (D^+) с образованием многокомпонентных комплексов $\{(\operatorname{prf})_x \cdot L\} \cdot C_{60}$ или $\{(D^+) \cdot (\operatorname{prf}) \cdot (C_{60}^-)\}$, где prf — порфирин $^{16-20}$. Так, координационно связанные моно-, би- и тетраядерные тетрафенилпорфиринаты цинка образуют с C_{60} молекулярные комплексы $(ZnTPP_x \cdot L) \cdot C_{60}$ (TPP- тетрафенилпорфирин; x=1,

2 и 4) $^{16,\hat{17},20}$. Использование координирующего катиона N-метилдиазабицикло[2.2.2] октана (MDABCO⁺) позволило получить серию многокомпонентных ионных комплексов {(MDABCO⁺)·(Co^{II}prf)·C₆₀-·(Solv)} (Solv — растворитель), в которых наблюдается обратимое образование диамагнитных ко-

MDABCO⁺

ординационно связанных частиц [(MDABCO⁺) • $\text{Co}^{\text{II}}\text{OEP} \cdot \text{C}_{60}^{-}$] ¹⁸, где $\text{Co}^{\text{II}}\text{OEP}$ — октаэтилпорфиринат кобальта(II), и образование необычного димера (C_{60}^{-})₂, соединенного двумя С—С-связями^{19,20}.


Эти работы показали, что внедрение в комплекс азотсодержащего лиганда или катиона за счет образования дополнительных координационных связей

атома азота с атомом металла порфиринового цикла позволяет влиять на структуру образующегося комплекса, а в ряде случаев на зарядовое состояние фуллерена и физические свойства комплексов.

Диалкилдитиокарбаматы металлов $M^{II}(R_2dtc)_2$, образующие обширный класс металлоорганических соединений, обладают рядом особенностей, важных для дизайна донорно-акцепторных комплексов с фуллеренами.

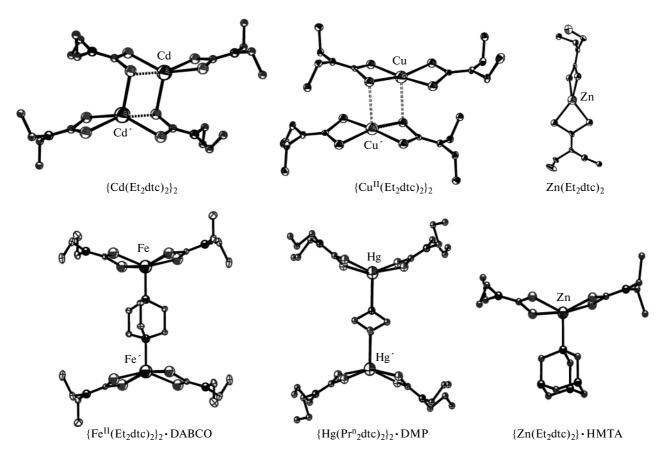
Большинство дитиокарбаматов двухвалентных металлов, имея биядерную 21-26, стерически хорошо соответствуют сферической форме молекул фуллеренов. Использование различных металлов (МІІ) и алкильных заместителей различной длины (R) позволяет модифицировать структуру дитиокарбаматов и влиять на их донорные свойства²⁷. Некоторые дитиокарбаматы интенсивно поглощают свет в видимой области частот ($M = Cu^{II}$ и Ni^{II}) или проявляют необычные магнитные свойства, например, $Fe^{III}(Et_2dtc)_2Cl$ является однокомпонентным ферромагнетиком с T_c = 2.46 K (см. лит.²⁸). K настоящему времени охарактеризовано всего несколько комплексов дитиокарбаматов металлов с π -акцепторами, в частности, комплексы тетрацианохинодиметана с диалкилдитиокарбаматами молибдена и вольфрама 29,30 . Нами $^{31-33}$ был получен большой ряд комплексов фуллеренов C_{60} и С₇₀ с дитиокарбаматами различных металлов (М = Cu^{II}, Cu^I, Ag^I, Zn, Cd, Hg^{II}, Mn^{II}, Ni^{II}, Pt^{II}, Pd^{II}) и большим набором заместителей ($R = Me, Et, Pr^n, Bu^n$,

Дитиокарбаматы металлов, как и металлопорфирины, способны образовывать координационно связанные структуры с азотсодержащими лигандами. Такие структуры получены в основном с дитиокарбаматами цинка и кадмия. Бидентатные лиганды 4,4′-бипиридин, бис(4-пиридил)этилен и тетраметилэтилендиамин связывают эти дитиокарбаматы в биядерные структуры $\{M(R_2dtc)_2\}_2 \cdot L$ (см. лит. 34-36), а пиридин, имидазол, 2,2′-бипиридин и фенантролин образуют с дитиокарбаматами моноядерные структуры $\{M(R_2dtc)_2\} \cdot L$ (см. лит. 37,38). Оказалось, что при сокристаллизации фуллерена С₆₀ с дитиокарбаматами металлов в присутствии диазабициклооктана (DABCO), N,N'-диметилпиперазина (DMP) и гексаметилентетраамина (НМТА) образуются комплексы С₆₀ с моно- и биядерными дитиокарбаматами металлов, координационно связанными с азотсодер-

жащими лигандами { $[M^{II}(R_2dtc)_2]_x \cdot L$ } $\cdot C_{60}$ (M = Zn, Cd, Hg, Mn, Fe; R = Et, Prⁱ и Prⁿ; x = 1 и 2, L = DABCO, DMP, HMTA).

Помимо известных структур дитиокарбаматов цинка и кадмия, в комплексах с фуллеренами впервые удалось наблюдать образование аналогичных структур дитиокарбаматов ртути(II), марганца(II) и железа(II).

В данной работе описан синтез, изучены кристаллические структуры, магнитные и фотофизические свойства комплексов $\{M^{II}(R_2dtc)_2\} \cdot C_{60}, \{M^{II}(R_2dtc)_2\} \cdot C_{70}$ и $\{[M^{II}(R_2dtc)_2\} \cdot C_{60} \ (x=1 \ \text{и 2}, L=DABCO, DMP, HMTA).$


Обсуждение полученных результатов

1. Синтез комплексов

Дитиокарбаматы в процессе сокристаллизации с фуллеренами могут образовывать как биядерные $\{M^{II}(R_2dtc)_2\}_2$, так и моноядерные $M^{II}(R_2dtc)_2$ комплексы. Биядерные дитиокарбаматы образуются за счет аксиальной координации атома серы с атомом металла соседнего дитиокарбамата (рис. 1). С фуллеренами они образуют комплексы состава $\{Cu(EtMedtc)_2\}_2$. \cdot C₆₀ (1), {M^{II}(R₂dtc)₂}₂ \cdot C₆₀ (2—5), где R = Et, M = Cu (2), Cd (3), Hg (4), Fe (5), и $\{Mn(Et_2dtc)_2\}_2 \cdot C_{70}$ (6). Биядерная структура известна^{21—24} для дитиокарбаматов меди(II), кадмия(II) и железа(II), а для $Hg^{II}(Et_2dtc)_2$ и $Mn^{II}(Et_2dtc)_2$, по-видимому, наблюдается впервые. Исходный дитиокарбамат $\mathrm{Hg^{II}}(\mathrm{Et_2dtc})_2$ имеет моноядерную плоскую структуру³⁹, а $\mathrm{Mn^{II}}(\mathrm{Et_2dtc})_2$ — полиядерную 40 . Дитиокарбамат $Zn(Et_2dtc)_2$ в комплексе с С₆₀ имеет моноядерную тетрагональную структуру (см. рис. 1), хотя для исходного соединения характерна биядерная структура^{25,26}. Как правило, кристаллы комплеков С₆₀ с дитиокарбаматами получали концентрированием раствора, содержащего фуллерен и соответствующий дитиокарбамат металла. Однако дитиокарбаматы кадмия(іі), марганца(іі) и железа(II) даже из разбавленных растворов C₆H₆, PhCl или С₆H₄Cl₂ практически количественно осаждают комплексы фуллеренов $\{M^{II}(Et_2dtc)_2\}_2 \cdot C_{60}$ и $\{M^{II}(Et_2dtc)_2\}_2 \cdot C_{70}$ в виде порошков, поэтому кристаллы комплексов с этими дитиокарбаматами получали методом медленной диффузии.

Дитиокарбаматы Cu^{II} с длинными алкильными заместителями (Pr^n , Bu^n) образуют комплексы с большим содержанием фуллерена { $Cu^{II}(R_2dtc)_2$ } \cdot (C_{60})_m (m=2 (7), 2.5 (8)) и, по-видимому, имеют планарную моноядерную структуру. Такая же структура характерна для дитиокарбаматов Ni^{II} и Pt^{II} , которые образуют с C_{60} комплексы аналогичного состава { $M(Pr^n_2dtc)_2$ } \cdot (C_{60}) $_2$ (см. лит. 32).

Если дитиокарбамат металла $M^{II}(R_2dtc)_2$ имеет склонность к экстракоординации ($M^{II}=Zn$, Cd, Hg, Mn и Fe), то при введении в синтез третьего компонента — координирующего лиганда DABCO, DMP или HMTA — образуются комплексы фуллеренов с

Рис. 1. Молекулярные структуры дитиокарбаматов металлов и свободных и координационно связанных с азотсодержащими лигандами, координационно связанных димеров и мономеров в комплексах с C_{60} : диэтилдитиокарбамата кадмия, $\{Cd(Et_2dtc)_2\}_2$; диэтилдитиокарбамата меди(II), $\{Cu(Et_2dtc)_2\}_2$; диэтилдитиокарбамата цинка, $Zn(Et_2dtc)_2$; диэтилдитиокарбамата железа(II), координационно связанного с DABCO, $\{Fe(Et_2dtc)_2\}_2 \cdot DABCO$; ди(u-пропил)дитиокарбамата ртути(II), координационно связанного с DMP, $\{Hg(Pr_2^ndtc)_2\}_2 \cdot DMP$; диэтилдитиокарбамата цинка, координационно связанного с гексаметилентетраамином, $\{Zn(Et_2dtc)_2\} \cdot HMTA$.

моно- и биядерными дитиокарбаматами металлов, в которых они координационно связаны с этими лигандами. При этом важна длина алкильных заместителей в дитиокарбамате. Комплексы с DABCO (9—13) и HMTA (14) (см. рис. 1) могут быть получены только с дитиокарбаматами, содержащими Et- и Prⁱ-заместители.

 $\{Cu(EtMedtc)_2\}_2 \cdot C_{60}$ (1) ${Cu(Et_2dtc)_2}_2 \cdot C_{60}$ (2) ${Cd(Et_2dtc)_2}_2 \cdot C_{60}$ (3) $\{Hg(Et_2dtc)_2\}_2 \cdot C_{60} (4)$ $\{\text{Fe}(\text{Et}_2\text{dtc})_2\}_2 \cdot \text{C}_{60} (5)$ $\{Mn(Et_2dtc)_2\}_2 \cdot C_{70}$ (6) $\{Cu(Pr_{2}^{n}dtc)_{2}\} \cdot (C_{60})_{2}$ (7) ${Cu(Bu^{n}_{2}dtc)_{2}} \cdot (C_{60})_{2.5} \cdot (PhCl)_{0.5}$ (8) $[\{Zn(Et_2dtc)_2\}_2 \cdot DABCO] \cdot C_{60} \cdot (DABCO)_2$ (9) $[\{Cd(Et_2dtc)_2\}_2 \cdot DABCO] \cdot C_{60} \cdot (DABCO)_2 \cdot (10)$ $[\{Fe(Et_2dtc)_2\}_2 \cdot DABCO] \cdot C_{60} \cdot (DABCO)_2 (11)$ $[\{Mn(Et_2dtc)_2\}_2 \cdot DABCO] \cdot C_{60} \cdot (DABCO)_2 (12)$ $[\{Cd(Pr_2^idtc)_2\}_2 \cdot DABCO] \cdot C_{60} \cdot (C_6H_{14})_{0.88} \cdot$ \cdot (C₆H₄Cl₂)_{0.12} (13) $[\{Zn(Et_2dtc)_2\} \cdot HMTA]_2 \cdot C_{60} \cdot PhCl (14)$ $[\{Hg(Pr^{n}_{2}dtc)_{2}\}_{2} \cdot DMP] \cdot (C_{60})_{5} \cdot (PhCl)_{2} (15)$ $Zn(Et_2dtc)_2 \cdot C_{60} \cdot (PhCl)_{0.5} \cdot (C_6H_6)_{0.5}$ (16)

Дитиокарбамат $Hg^{II}(Et_2dtc)_2$ не координирует DABCO и в его присутствии кристаллизуется комп-

лекс $\{Hg(Et_2dtc)_2\}_2 \cdot C_{60}$ (4). Комплексы C_{60} с диалкилдитиокарбаматами, координационно связанными с DMP, например $[\{Hg(Pr^n_2dtc)_2\}_2 \cdot DMP] \cdot (C_{60})_5 \cdot (PhCl)_2$ (15)*, образуются только в случае, если дитиокарбаматы имеют длинные алкильные заместители $(R = Pr^n, Bu^n)$.

2. Кристаллическая структура комплексов

2.1. Комплексы с биядерными дитиокарбаматами металлов

Основные геометрические параметры $M^{II}(Et_2dtc)_2$ и длины ван-дер-ваальсовых контактов в комплексах C_{60} представлены в таблицах 1—4. Молекулярные структуры $M^{II}(Et_2dtc)_2$ показаны на рисунке 1.

$$\begin{array}{c|c} & & & & \\ & & & & \\ N & & & & \\ S & & & \\ S & & & \\ S & & & \\ \end{array}$$

Комплексы $[Cu^{II}(EtMe_2dtc)_2]_2 \cdot C_{60}$ (1), $[Cu^{II}(Et_2dtc)_2]_2 \cdot C_{60}$ (2), $[Cd(Et_2dtc)_2]_2 \cdot C_{60}$ (3) и

^{*} Комплексы C_{60} с диалкилдитиокарбаматами ($R=Pr^n, Bu^n, M=Zn, Cd$), координационно связанными с DMP, в данной работе не представлены.

Таблица 1. Длины связей в дитиокарбаматах металлов(II), свободных и координационно связанных с азотсодержащими лиганлами

Комп-	Структурная	Металл	R	Лиганд Длина связи/Å					
лекс	единица				a	b	с	d	M—S*
2	$[M^{II}(R_2dtc)_2]_2$	Cu	Et	_	2.3354(8)	2.2978(8)	2.2994(9)	2.3218(8)	3.030(1)
3	$[M^{II}(R_2dtc)_2]_2$	Cd	Et	_	2.8771(10)	2.544(9)	2.5333(10)	2.6330(10)	2.5988(12)
4	$[M^{II}(R_2dtc)_2]_2$	Hg	Et	_	3.1672(8)	2.5046(7)	2.6259(7)	2.4629(7)	2.6994(7)
10	$[M^{II}(R_2dtc)_2]_2 \cdot L$	Cd	Et	DABCO	2.7050(2)	2.5438(2)	2.5438(2)	2.7050(2)	_
11	$[M^{II}(R_2dtc)_2]_2 \cdot L$	Mn	Et	DABCO	2.4872(4)	2.5971(5)	2.5971(5)	2.4872(4)	_
12	$[M^{II}(R_2dtc)_2]_2 \cdot L$	Fe	Et	DABCO	2.5241(3)	2.4024(3)	2.4024(3)	2.5241(3)	_
13	$[M^{II}(R_2dtc)_2]_2 \cdot L$	Cd	$\mathbf{Pr^{i}}$	DABCO	2.6011(4)	2.5907(4)	2.5907(4)	2.6011(4)	_
15	$[M^{II}(R_2dtc)_2]_2 \cdot L$	Hg	Pr^n	DMP	2.7300(11)	2.5411(10)	2.9420(11)	2.4207(10)	_

^{*} Аксиальная связь.

Таблица 2. Углы в дитиокарбаматах металлов(II), свободных и координационно связанных с азотсодержащими лиганлами

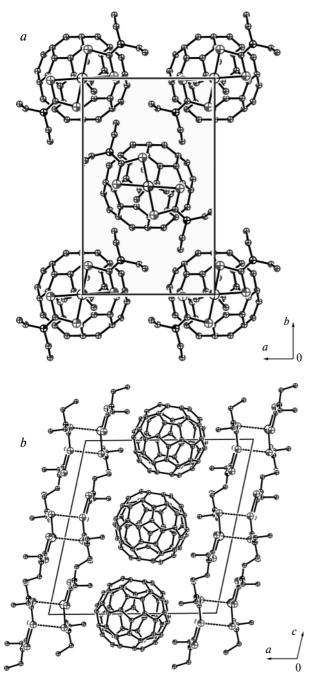
Ком	п- Угол/град					
лекс	α	β	γ	δ	ψ*	
2	76.90(3)	77.06(3)	164.84(3)	173.00(3)	160.9	
3	66.67(3)	70.29(3)	143.80(3)	157.64(4)	143.8	
4	69.73(2)	63.14(2)	143.41(2)	156.27(2)	144.37	
10	69.064(6)	69.064(6)	150.702(10)	163.779(11)	148.94	
11	71.155(13)	71.155(13)	148.32(3)	161.23(3)	146.45	
12	72.601(10)	72.601(10)	146.507(18)	159.740(19)	144.78	
13	69.426(13)	69.426(13)	157.31(2)	162.50(2)	154.65	
15	68.99(3)	66.52(3)	141.14(4)	158.01(3)	137.84	

^{*} Двугранный угол между плоскостями NCS₂M.

 $[Hg^{II}(Et_2dtc)_2]_2 \cdot C_{60}$ (4) имеют слоистое строение. Молекулы фуллеренов и дитиокарбаматов металлов в них полностью упорядочены.

В комплексе $[Cu^{II}(Et_2dtc)_2]_2 \cdot C_{60}$ (2) плотно упакованные слои с квадратным расположением молекул фуллеренов чередуются со слоями, состоящими из $\{Cu^{II}(Et_2dtc)_2\}_2$ (рис. 2). Каждая молекула C_{60} в слое имеет четыре соседних молекулы C_{60} вдоль диагоналей к плоскости bc с расстоянием между центрами 10.02 Å (см. рис. 2, a). Между фуллеренами есть

Таблица 3. Ван-дер-ваальсовы контакты между фуллеренами и дитиокарбаматами в комплексах **2—4**, **10—13**, **15**


Ком	п-	- Расстояние/Å						
лекс	N_LM	MM	MC _{C60}	SC _{C60}	NC _{C60}	HC _{C60}		
2	_	3.529	3.269,	3.52—	3.68—	2.84—		
			3.307	3.89	3.81	2.94		
3	_	3.802	3.587,	3.51-	3.52-	2.86-		
			3.592	3.80	3.77	3.13		
4	_	3.939	3.569,	3.497—	3.75	2.891		
			3.615	3.698				
10	2.3419	7.259	3.461,	3.60—	3.63—	2.87—		
			3.461	3.75	3.71	3.02		
11	2.241(2)	7.077	3.520,	3.59—	3.583	2.826		
			3.520	3.80				
12	2.1655(16)	6.922	3.560,	3.61-	3.56-	2.82-		
			3.560	3.83	3.63	3.06		
13	2.362(2)	7.322	3.460,	3.55-	3.77	>3.4		
			3.460	3.94				
15	2.508(4)	6.530	4.061,	3.443—	3.243—	>3.30		
			4.320	3.448	3.707			

укороченные ван-дер-ваальсовы С...С-контакты, 3.329-3.466 Å (сумма ван-дер-ваальсовых радиусов двух sp²-гибридизованных атомов углерода равна 3.42 Å)⁴¹. Расстояние между центрами (10.02 Å) близко к соответствующему расстоянию в C_{60} при 153 K (9.94 Å)⁴².

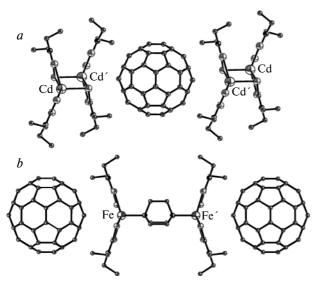
Таблица 4. Геометрические параметры, характеризующие взаимное расположение дитиокарбаматных и фуллереновых фрагментов в кристаллической упаковке комплексов **2—4**, **10—13** и **15**

Комплекс	ı- ψ ^а /град	Тип упаковки фуллеренов	Количество соседних молекул C_{60}	Расстояние между центрами $C_{60}/{ m \AA}$	$d_{\text{W}_{\text{dW}}}(\text{CC})^b/\text{Å}$ (<3.45 Å)
2	9.8, 13.6	Квадратные слои	4	10.020(×4), 10.250(×2)	3.329-3.466
3	0.8, 8.2	Квадратные слои	4	$9.990(\times 4), 10.536(\times 2)$	3.328 - 3.770
4	1.0, 10.2	Квадратные слои	4	$9.987(\times 4), 10.556(\times 2)$	3.229 - 3.393
10	5.7, 5.7	Квадратные слои	4	$10.004(\times 4), 10.458(\times 2)$	3.365 - 3.367
11	5.0, 5.0	Квадратные слои	4	$10.001(\times 4), 10.441(\times 2)$	3.369, 3.369
12	4.6, 4.6	Квадратные слои	4	$9.938(\times 4), 10.349(\times 2)$	3.311-3.399
13	16.8, 16.8	Слои	0	$10.113(\times 4), 11.716(\times 2)$	>3.57
15	19.4^{c}	Трехмерная	$6-7^{d}$	9.714—10.281	3.078 - 3.470

 $[^]a$ Двугранный угол между плоскостями NCS $_2$ М и гексагона C_{60} . b Ван-дер-ваальсовы контакты между фуллеренами. c Только для одного гексагона C_{60} . d В комплексе 15 присутствует три независимых молекулы C_{60} , две из них имеют шесть соседних молекул C_{60} и одна — семь таких молекул.

Рис. 2. Проекция кристаллической структуры **2** вдоль кристаллографических осей \bar{b} (b) и \bar{a} (a).

Проекция слоя $Cu^{II}(Et_2dtc)_2$ на слой C_{60} показана на рисунке 2, a. Центральный фрагмент CuS_4 располагается над сферой C_{60} , тогда как Et-группы занимают пустоты в фуллереновом слое. Упаковка $\{Cu^{II}(Et_2dtc)_2\}_2$ в слоях имеет паркетный мотив (см. рис. 2, a). В образовании контактов $Cu...C_{C60}$ участвуют атомы углерода одной 6—6-связи C_{60} и длина этих контактов составляет 3.269 и 3.307 Å. Эти контакты заметно длиннее аналогичных контактов $Cu...C_{C60}$ в комплексах фуллеренов с октаэтил- и тетрафенилпорфиринатами меди(II) (2.88—3.02 Å), 13,14 что указывает на слабую координацию металла с фуллереном. В комплексе образуются ван-дер-ваальсовы контакты между $Cu^{II}(Et_2dtc)_2$ и C_{60} (см. табл. 1—3).


Особо следует отметить контакты H...C этильных заместителей $\{Cu^{II}(Et_2dtc)_2\}_2$ с C_{60} (2.845—2.938 Å), которые, по-видимому, играют важную роль в упорядочении молекул C_{60} . Эти контакты образуются за счет того, что связи C-H этильных заместителей направлены в сторону атомов углерода C_{60} ($C-H...\pi$ -взаимодействие). Аналогичные контакты найдены и в других слоистых комплексах.

В исходном дитиокарбамате $\{Cu^{II}(Et_2dtc)_2\}_2$ атомы Cu^{II} имеют квадратно-пирамидальное окружение, при этом четыре экваториальные связи Cu—S короткие (средняя длина $2.3117\,$ Å), а аксиальная связь Cu—S более длинная ($2.844(1)\,$ Å) 21 . При образовании комплекса 2 аксиальная связь Cu—S в $\{Cu^{II}(Et_2dtc)_2\}_2$ удлиняется до $3.030(2)\,$ Å. Удлинение этой связи может быть связано со слабой координацией атома Cu^{II} с фуллереном. При образовании комплекса 2 расположение 2 групп в $\{Cu^{II}(Et_2dtc)_2\}_2$ также изменяется. Если в исходном дитиокарбамате 2 Три из негороны 2 противоположные стороны 2 то в комплексе 2 три из четырех 2 Еt-заместителей 2 Си $^{II}(Et_2dtc)_2$ направлены в сторону фуллеренового слоя.

В комплексе $[Cu^{II}(EtMedtc)_2]_2 \cdot C_{60}$ (1) молекулы C_{60} образуют плотные гексагональные слои, в которых каждая молекула фуллерена связана ван-дер-ваальсовыми контактами с шестью соседними молекулами C_{60} (расстояния между центрами C_{60} составляет 9.89 и 10.02 Å)³². Молекулы C_{60} в комплексе 1 упакованы более плотно, чем в 2 за счет того, что только два Et-заместителя $\{Cu^{II}(EtMedtc)_2\}_2$ выходят в пустоты в слое фуллерена. Замена двух Et-групп на метильные приводит к более плотной упаковке молекул $\{Cu^{II}(EtMedtc)_2\}_2$ в донорных слоях. Расстояния $Cu...C_{C60}$ составляют 3.334 и 3.379 Å.

комплексах $[Cd(Et_2dtc)_2]_2 \cdot C_{60}$ $[Hg(Et_2dtc)_2]_2 \cdot C_{60}$ (4) молекулы фуллеренов имеют квадратное расположение в слоях с расстояниями между центрами вдоль диагоналей к плоскости bc9.99 Å. Эффективная упаковка $\{M(Et_2dtc)_2\}_2$ и C_{60} в кристалле достигается благодаря тому, что биядерный дитиокарбамат имеет форму двойной книжки (см. рис. 1). Полость, образованная четырьмя фрагментами MS_2CNEt_2 , идеально подходит для молекулы C_{60} (рис. 3, *a*). Контакты $M...C_{C_{60}}$ осуществляются за счет двух атомов углерода, входящих в 6—6-связь C_{60} . Эти расстояния длиннее, чем в комплексах 1 и 2, и составляют 3.587 и 3.592 Å (3) и 3.569 и 3.615 Å (4), т.е. в комплексах 3 и 4 координация металла с фуллереном практически отсутствует. При сокристаллизации $\{Cd(Et_2dtc)_2\}_2$ с C_{60} аксиальная связь в дитиокарбамате удлиняется от 2.812 Å в исходном соединении 22,23 до 2.877 Å в 3. В комплексах 3 и 4 только две из четырех Et-групп $M(Et_2dtc)_2$ направлены в слой фуллерена (исходное соединение $\{Cd(Et_2dtc)_2\}_2$ имеет аналогичную конформацию) 22,23 .

Несмотря на схожесть кристаллических структур ${\bf 1}, {\bf 2}$ и ${\bf 3}, {\bf 4}$ характер взаимодействия между молекулами дитиокарбаматов металлов и C_{60} в них существенно различается. Это связано, в первую очередь,

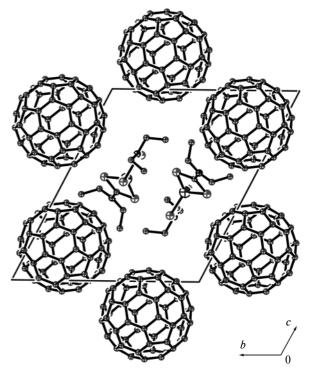
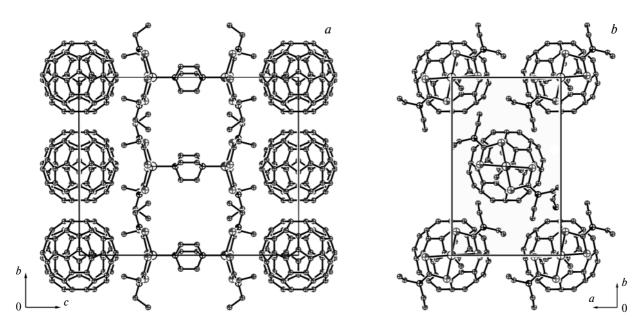


Рис. 3. Взаимное расположение $\{Cd(Et_2dtc)_2\}_2$ и C_{60} в комплексе **3** (*a*) и $\{Fe^{II}(Et_2dtc)_2\}_2 \cdot DABCO$ и C_{60} в комплексе **11** (*b*).

с разными углами между плоскостями MS₂CN в дитиокарбамате. Дитиокарбаматы $\{Cu^{II}(EtMedtc)_2\}_2$ и $\{Cu^{II}(Et_2dtc)_2\}_2$ имеют относительно длинную аксиальную связь Cu-S и, как следствие, более плоскую форму центрального фрагмента $Cu^{II}(S_2CN)_2$ (двугранный угол между плоскостями Cu^{II}S₂CN составляет 158.6° (1) и 160.9° (2)). В дитиокарбаматах ${M(Et_2dtc)_2}_2$ (M = Cd и Hg), связанных короткой аксиальной связью M-S, этот угол равен 143.8° (3) и 144.4° (4). Более плоский фрагмент Cu(S₂CN)₂ в 1 и 2 способствует образованию более коротких контактов $Cu...C_{C_{60}}$, чем аналогичные контакты $M...C_{C_{60}}$ в 3 и 4. Однако более вогнутая форма фрагментов M(Et₂dtc)₂ (M = Cd и Hg) лучше соответствует сферической форме С₆₀, так как двугранные углы между двумя соседними гексагонами C_{60} (138.5°) и плоскостями MS_2CN в дитиокарбаматах Cd и Hg^{II} близки (см. рис. 3, a). Это приводит к более эффективному взаимодействию их π-систем (соответствующие двугранные углы между плоскостями MS₂CN и гексагонами C₆₀ составляют всего 0.8 и 8.2° (3) и 1.0 и 10.2° (4)). Аналогичные двугранные углы в 1 и 2 существенно больше и составляют 9.8, 13.6° и 9.5, 12.6° соответственно.

2.2. Комплекс C_{60} с $Zn(Et_2dtc)_2$

Комплекс $Zn(Et_2dtc)_2 \cdot C_{60} \cdot (PhCl)_{0.5} \cdot (C_6H_6)_{0.5} \cdot (16)$ имеет необычную трехмерную каркасную структуру из молекул C_{60} с каналами, идущими вдоль направления \bar{a} , в которых располагаются молекулы $Zn(Et_2dtc)_2$ и растворителя (рис. 4). Каждый фуллерен C_{60} имеет шесть соседних молекул C_{60} с расстояниями между центрами 9.74-9.93 Å, что близко или меньше аналогичных расстояний в C_{60} (см. лит. 42). Укороченные ван-дер-ваальсовы контакты C...C между соседними фуллеренами составляют 3.250-3.360 Å. В комплексе 16 $Zn(Et_2dtc)_2$ имеет псевдотетрагональное окружение атомов Zn^{II} . Из-за неплоской структуры толь-


Рис. 4. Вид структуры **16** вдоль кристаллографической оси \bar{a} . Молекулы $Zn(Et_2dtc)_2$ и растворителя, расположенные в каналах, не показаны.

ко одна половина молекулы $Zn(Et_2dtc)_2$ образует ван-дер-ваальсовы контакты с C_{60} , но и в этом случае $\pi-\pi$ -взаимодействие с C_{60} отсутствует. Ближайшее расстояние $Zn...C_{C_{60}}$ составляет 3.659 Å, что близко к длине контактов $M...C_{C_{60}}$ в **3** и **4**.

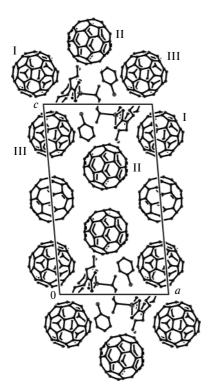
2.3. Комплексы C_{60} с координационно связанными дитиокарбаматами металлов

Бидентантные лиганды DABCO и DMP (L) координационно связывают две молекулы дитиокарбамата металла (Zn, Cd, Hg, Mn и Fe), образуя биядерные дитиокарбаматы $\{M^{II}(R_2dtc)_2\}_2 \cdot L$. Их молекулярная структура показана на рисунке 1, длины связей и углы приведены в таблицах 1—3. Длины аксиальных связей М-N_L в таких дитиокарбаматах существенно короче, чем длины экваториальных связей М-S, и увеличиваются в ряду: Zn (2.14 Å) < Fe (2.16 Å) < Mn(2.24 Å) < Cd (2.34-2.36 Å) < Hg (2.51 Å). Средние длины экваториальных связей М-Ѕ увеличиваются примерно в той же последовательности: Fe (2.46 Å) ≤ \leq Zn (2.47 Å) \leq Mn (2.54 Å) \leq Cd (2.60–2.62 Å) \leq Hg (2.66 Å). Таким образом, наблюдается очевидная тенденция к увеличению длины связей $M-N_L$ и M-S с увеличением ковалентного радиуса центрального атома металла в дитиокарбамате: Zn (0.74 Å), $Fe^{II} (0.74 \text{ Å})$, Mn^{II} (0.80 Å), Cd (0.97 Å), Hg^{II} (1.10 Å)⁴³.

Координационно связанные биядерные дитиокарбаматы в комплексах с фуллеренами имеют различное строение в зависимости от типа заместителя (R) и лиганда (L). В $\{M(Et_2dtc)_2\}_2 \cdot DABCO (10-12)$ фрагменты $M(Et_2dtc)_2$ расположены точно друг над дру-

Рис. 5. Вид кристаллической структуры 11 вдоль кристаллографических осей \bar{a} (a) и \bar{c} (b). Молекулы DABCO, находящиеся в слое {Fe^{II}(Et₂dtc)₂}₂ • DABCO, не показаны.

гом, в {Cd(Pr $^{i}_{2}$ dtc) $_{2}$ } $_{2}$ • DABCO (13) с более объемными Pr i -заместителями фрагменты Cd(Pr $^{i}_{2}$ dtc) $_{2}$ повернуты друг относительно друга на 69.4°, а в {Hg II (Pr $^{n}_{2}$ dtc) $_{2}$ } $_{2}$ • DMP (15) фрагменты Hg II (Pr $^{n}_{2}$ dtc) $_{2}$ сдвинуты друг относительно друга на ~2.9 Å. Несмотря на то, что HMTA является тетрадентатным лигандом, в случае комплекса 14 он образует только координационно связанный моноядерный дитиокарбамат {Zn(Et $_{2}$ dtc) $_{2}$ }• HMTA (см. рис. 1).

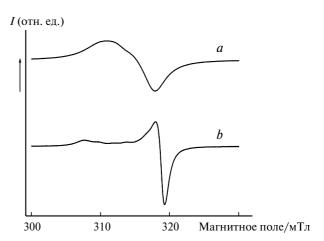

Комплексы C_{60} с $\{M^{II}(Et_2dtc)_2\}_2 \cdot DABCO (M = Cd (10), Mn (11) и Fe (12) (рис. 5)), <math>\{Cd(Pr^i_2dtc)_2\}_2 \cdot DABCO (13) и \{Zn(Et_2dtc)_2\} \cdot HMTA (14) имеют слоистое строение. Молекулы <math>C_{60}$ упорядочены во всех этих структурах (за исключением 13) вследствие хорошего стерического соответствия между сферической формой C_{60} и формой книжки молекул дитиокарбаматов (см. рис. 3, b).

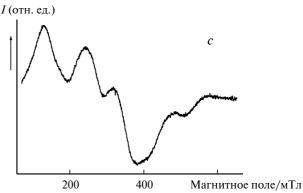
В комплексах **10**, **11**, **12** и **14** каждая молекула С₆₀ в слое имеет четыре соседних молекулы C_{60} с расстояниями между центрами 10.004 (10), 10.001 (12), 9.94 (11) (см. рис. 5) и 9.92—9.94 Å (14), что близко к аналогичным расстояниям в C_{60} (см. лит. 42). В результате плотной упаковки в слое ван-дер-ваальсовы контакты С...С между молекулами фуллеренов лежат в интервале 3.296—3.385 Å (см. табл. 3). Расстояния между центрами молекул фуллеренов зависят от природы центрального атома металла, а точнее от средней длины экваториальных связей M—S и увеличивается в ряду: Cd > Mn > Fe > Zn. Комплекс C_{60} с ${Cd(Pr_2^idtc)_2}_2 \cdot DABCO$ (13) образует слои с изолированными молекулами С₆₀. Расстояние между центрами составляет 10.11 Å, в этом случае ван-дер-ваальсовы контакты между C_{60} отсутствуют. Это объясняется тем, что в комплексе 13 четыре Ме-группы $Cd(Pr_2^idtc)_2$ входят в фуллереновый слой, раздвигая молекулы C_{60} , тогда как в комплексах 10—12 и 14 в слой фуллеренов входят только две Et-группы $M^{II}(Et_2dtc)_2$. Таким образом, длина алкильных заместителей и природа металла в дитиокарбамате определяют расстояния между молекулами C_{60} в слоях.

Проекция слоя $\{Fe^{II}(Et_2dtc)_2\}_2 \cdot DABCO$ на слой C_{60} в комплексе $\mathbf{11}$ показана на рисунке 5. Центральный фрагмент FeS_4 располагается над сферой C_{60} таким образом, что атом Fe^{II} подходит к 6—6-связи C_{60} и образует контакты $Fe...C_{C60}$ длиной 3.56 Å. В других слоистых комплексах дитиокарбаматы металлов располагаются аналогично. Расстояние $M...C_{C60}$ составляет 3.46 Å в $\mathbf{10}$ и $\mathbf{15}$, 3.52 Å в $\mathbf{12}$ и 3.53—3.58 Å в $\mathbf{14}$, что указывает на отсутствие координационного связывания между металлом дитиокарбамата и фуллереном.

Структура 15 трехмерная с большими вакансиями, которые заняты $\{Hg(Pr_2^ndtc)_2\}_2 \cdot DMP$ и молекулами растворителя (рис. 6). Это обусловливает необычный состав комплекса, при котором на одну молекулу координационно связанного дитиокарбамата приходится пять молекул С₆₀. В комплексе 15 присутствуют три кристаллографически независимые молекулы C_{60} . Молекулы C_{60} первого типа образуют ван-дер-ваальсовы контакты с центральным фрагментом $Hg(Pr^n_2dtc)_2$ аналогично комплексам 10—13 и **14** (см. рис. 6, тип I). Молекулы C_{60} второго типа (см. рис. 6, тип II) располагаются между н-пропильными заместителями $Hg(Pr^n_2dtc)_2$. Третий тип молекул C_{60} (см. рис. 6, тип III) не имеет ван-дер-ваальсовых контактов с $\{Hg(Pr_2^ndtc)_2\}_2 \cdot DMP$, а только с PhCl. Как следствие, молекулы C_{60} третьего типа разупорядочены. Каждая молекула С₆₀ окружена шестью—семью соседними молекулами C_{60} , при этом они плотно упакованы и образуют между собой многочисленные ван-дер-ваальсовы контакты С...С в интервале 3.078—3.470 Å. Атом Hg^{II}, так же как и в предыдущих случаях, подходит к 6—6-связи C_{60} , расстояния $Hg...C_{C_{60}}$ при этом составляют 4.06-4.32 Å.

Фрагменты $M(R_2dtc)_2$ в $\{M(R_2dtc)_2\}_2 \cdot DABCO$ и $\{Zn(Et_2dtc)_2\} \cdot HMTA$ имеют форму «книжки» с дву-




Рис. 6. Вид кристаллической структуры **15** вдоль кристаллографической оси \overline{b} . Показана одна ориентация для разупорядоченных молекул хлорбензола и фуллеренов III-го типа.

гранными углами между плоскостями MS₂CN 144.78—148.94° (см. табл. 2). Эти углы близки к двугранному углу между плоскостями двух гексагонов в молекуле С₆₀, что обеспечивает хорошее стерическое соответствие между формами молекул дитиокарбаматов и C_{60} (см. рис. 3, b). Следствием этого является эффективное взаимодействие их π-систем (двугранные углы между плоскостями MS₂CN и гексагонов C_{60} составляют всего 4.56—5.70°, а ван-дер-ваальсовы контакты меньше суммы ван-дер-ваальсовых радиусов соответствующих атомов). Если двугранные углы между плоскостями MS₂CN меньше (137.8°) или больше (154.6°), как в $\{Hg(Pr_2^ndtc)_2\}_2 \cdot DMP$ (15) и $\{Cd(Pr^{i}_{2}dtc)_{2}\}_{2} \cdot DABCO$ (13) соответственно, это приводит к ухудшению т-т-взаимодействия (соответствующие двугранные углы составляют уже 16.76—19.43°, см. табл. 2, 3). Следует отметить, что именно в структурах 13 и 15 наблюдается разупорядоченность молекул фуллеренов.

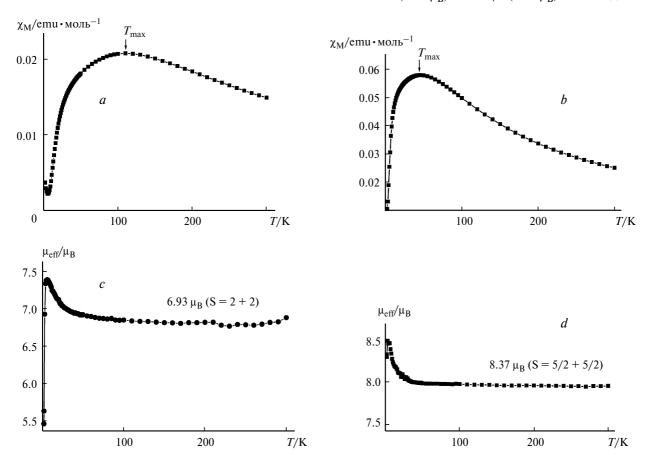
3. Магнитные свойства комплексов C_{60} с дитиокарбаматами $Cu^{II},\,Mn^{II}$ и Fe^{II}

ЭПР-спектроскопия является чувствительным методом, позволяющим регистрировать изменения в окружении атомов Cu^{II} при образовании комплексов $Cu(R_2dtc)_2$ с C_{60} . ЭПР-спектр $\{Cu^{II}(Et_2dtc)_2\}_2 \cdot C_{60}$ (2) (рис. 7, b) заметно изменяется по сравнению со спектром исходного $Cu(Et_2dtc)_2$ (рис. 7, a). Эти изменения связаны, по-видимому, со слабой координацией атомов Cu^{II} с C_{60} , что приводит к удлинению акси-

Рис. 7. Спектры ЭПР исходного $\{\text{Cu}^{\text{II}}(\text{Et}_2\text{dtc})_2\}_2$ (*a*), комплекса $\{\text{Cu}^{\text{II}}(\text{Et}_2\text{dtc})_2\}_2 \cdot \text{C}_{60}$ (**2**) (*b*) и $\{\text{Mn}^{\text{II}}(\text{Et}_2\text{dtc})_2\}_2 \cdot \text{C}_{70}$ (**6**) (*c*) при комнатной температуре. *I* — интенсивность сигнала.

альной связи Cu-S в $\{Cu^{II}(Et_2dtc)_2\}_2$, уплощению центрального фрагмента $Cu^{II}(S_2CN)_2$ и увеличению асимметрии окружения атомов Cu^{II} . Аналогичные спектры $\ni\Pi P$ имеют комплексы C_{60} с другими Cu^{II} -содержащими дитиокарбаматами (1, 7 и 8). Магнитная восприимчивость комплексов 1 и 2 в интервале 10-300 К описывается законом Кюри—Вейса с отрицательными константами Вейса: -2.5 К (1) и -2.0 К (2), что указывает на слабое антиферромагнитное взаимодействие спинов Cu^{II} в $\{Cu(R_2dtc)_2\}_2$. Слабое взаимодействие может быть объяснено большой длиной аксиальной связи Cu-S (2.787(1) Å в 1 и 3.030(2) Å в 2), через которую должно передаваться магнитное взаимодействие.

В исходном биядерном дитиокарбамате $\{\mathrm{Fe^{II}}(\mathrm{Et_2dtc})_2\}_2$ наблюдается ЭПР-сигнал с g=2.0708 и $\Delta H=61.6$ мТл, $\mathrm{Mn^{II}}(\mathrm{Et_2dtc})_2$ с искаженным октаэдрическим окружением $\mathrm{Mn^{II}}^{40}$ дает сигнал ЭПР с g=2.0115 и шириной $\Delta H=61.8$ мТл.


В случае комплекса $\{Fe^{II}(Et_2dtc)_2\}_2 \cdot C_{60}$ (5) отсутствует сигнал ЭПР. Комплекс $\{Mn^{II}(Et_2dtc)_2\}_2 \cdot C_{70}$ (6) имеет сложный спектр ЭПР, в котором присутствует несколько компонент в магнитном поле от 50 до 500 мТл (см. рис. 7, c). Изменения в спектре ЭПР $Mn^{II}(Et_2dtc)_2$ при образовании комплекса с фуллереном связаны, по-видимому, с изменением локального окружения Mn^{II} при переходе от полиядерной структуры исходного донора 40 к биядерной структуре в 6 . Аналогичные спектры ЭПР наблюдаются в

других биядерных комплексах Mn^{II} (см. лит. 44,45). Отсутствие сигналов ЭПР, характерных 46 для анион-радикалов C_{60} и C_{70} в обоих комплексах, указывает на отсутствие переноса заряда с дитиокарбаматов железа(II) и марганца(II) на фуллерен.

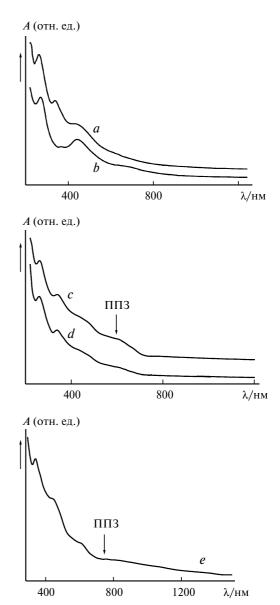
Магнитные моменты комплексов 5 и 6 при 300 К составляют 6.00 и 7.75 $\mu_{\rm B}$ (рис. 8, a, b) соответственно, что указывает на высокоспиновое состояние Fe^{II} и Mn^{II} в этих комплексах (вычисленные значения магнитных моментов для системы двух невзаимодействующих спинов S = 2 и S = 5/2 равны 6.93 и 8.37 μ_B соответственно). Магнитная восприимчивость комплексов в интервале 200-300 К может быть описана законом Кюри-Вейса с отрицательными константами Вейса -250 K (5) и -96 K (6), а максимумы магнитной восприимчивости достигаются уже при 110 К (5) и 46 К (6). Это указывает на очень сильное антиферромагнитное взаимодействие спинов Fe^{II} и Mn^{II}, связанное, скорее всего, с биядерной структурой $\{M^{II}(Et_2dtc)_2\}_2$ (M = Fe, Mn) в этих комплексах. В отличие от $\{Cu^{II}(Et_2dtc)_2\}_2$ с длинной аксиальной связью Cu-S, в исходном дитиокарбамате $\{Fe^{II}(Et_2dtc)_2\}_2$ аксиальная связь Fe-S короткая $(2.437 \text{ Å})^{24}$. При образовании комплексов с фуллеренами короткая аксиальная связь М—Ѕ должна сохраняться в $\{M^{II}(Et_2dtc)_2\}_2$ (M = Fe, Mn), как это наблюдается в комплексах 3 и 4, что должно приводить к сильному антиферромагнитному взаимодействию атомов металлов.

При образовании $\{M^{II}(Et_2dtc)_2\}_2 \cdot DABCO$ в 11 (Fe^{II}) и **12** (Mn^{II}) атомы металлов разделены лигандом DABCO, расстояния между ними составляют 6.922 и 7.077 Å соответственно. Спектр ЭПР 12, имеющий несколько компонент при 171, 262, 460 и 646 мТл, похож на спектр 6 и спектры ряда других биядерных комплексов Mn^{II} (см. лит. 44,45). Такой спектр связан с обменным взаимодействием между двумя атомами Mn^{II} в {Mn(Et₂dtc)₂}₂ • DABCO. Хотя Mn^{II}(Et₂dtc)₂ и Fe^{II}(Et₂dtc)₂ являются достаточно сильными донорами с потенциалами окисления ${
m M^{III}(dtc)_3}^{1-/0}$ -0.08 и -0.37 В соответственно²⁷, они не могут восстановить фуллерен С₆₀, первый потенциал восстановления которого составляет -0.485 B, 47 (все потенциалы измерены относительно Ag/AgCl). Действительно, сигналы ЭПР анион-радикала C_{60} отсутствуют в обоих комплексах, что указывает на отсутствие переноса заряда на молекулу фуллерена. Ранее было показано¹², что в комплексах C_{60} и C_{70} с тетрафенилпорфирином марганца(п) перенос заряда также отсутствует.

Температурные зависимости магнитных моментов 11 и 12 показаны на рисунке 8, c, d. При 300 K они равны 6.88 и 8.23 μ_B , что близко к значениям, вычисленным для системы двух невзаимодействующих спинов S=2 (6.93 μ_B) и S=5/2 (8.37 μ_B). Это свидетель-

Рис. 8. Данные магнитных измерений для комплексов в интервале 1.9—300 К: мольные магнитные восприимчивости $\{Fe^{II}(Et_2dtc)_2\}_2 \cdot C_{60}$ (5) (a) и $\{Mn^{II}(Et_2dtc)_2\}_2 \cdot C_{70}$ (6) (b). Магнитные моменты $[\{Fe^{II}(Et_2dtc)_2\}_2 \cdot DABCO] \cdot C_{60} \cdot (DABCO)_2$ (11) (c) и $[\{Mn^{II}(Et_2dtc)_2\}_2 \cdot DABCO] \cdot C_{60} \cdot (DABCO)_2$ (12) (d).

ствует о высокоспиновом состоянии металлов. Температурные зависимости магнитной восприимчивости 11 и 12 в интервале 50-300 К могут быть описаны законом Кюри-Вейса с положительными константами Вейса 1.70 и 0.35 К соответственно. При температуре ниже 50 и 35 К магнитные моменты начинают незначительно увеличиваться в обоих комплексах до максимального значения 8.5 µВ (при 3 К) и 7.4 $\mu_{\rm B}$ (при 6 K) (см. рис. 8, c, d). Увеличение магнитных моментов вместе с положительными константами Вейса свидетельствует о ферромагнитном взаимодействии спинов M^{II} в коодинационно связанных с DABCO дитиокарбаматах {M^{II}(Et₂dtc)₂}₂ · DABCO. Возможно, лиганд DABCO с коротким расстоянием N...N (2.594 Å) может передавать магнитное взаимодействие между атомами МІІ. По-видимому, это магнитное взаимодействие имеет только ближний порядок (внутри коодинационно связанного дитиокарбамата $\{M^{II}(Et_2dtc)_2\} \cdot DABCO\}$, поскольку дитиокарбаматы изолированы друг от друга. При понижении температуры ниже 3 и 6 K (см. рис. 8, c, d) магнитные моменты 11 и 12 уменьшаются. Причиной такого поведения может быть расщепление в нулевом поле спиновых уровней атомов Mn^{II} и Fe^{II} , находящихся в высокоспиновом состоянии. Подобное магнитное поведение наблюдается в координационных структурах, образованных гексацианохроматами и гексацианоферратами, $M^{III}(CN)_6^{3-}$, и катионом $Mn^{III}(salen)^+$ и его замещенными производными (salen — дианион N,N'-этиленбис(салицилиденамина)). В Mn^{III} (salen)⁺ атом Mn^{III} находится в высокоспиновом состоянии (S = 2), и для него также наблюдается расщепление в нулевом поле, приводящее к уменьшению магнитного момента при низких температурах $^{48-50}$. В соединении **11** атом Fe^{II} имеет такую же электронную конфигурацию, что и атом Mn^{III} в катионе Mn^{III} (salen)⁺.

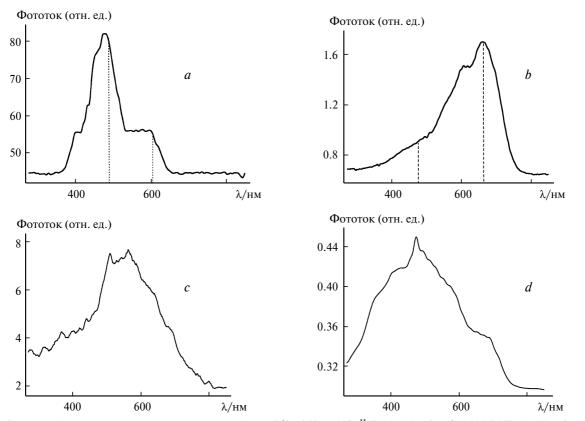

Таким образом, магнитное поведение комплексов 5 и 6 с биядерными дитиокарбаматами $\{M^{II}(Et_2dtc)_2\}_2$ существенно отличается от магнитного поведения 11 и 12 с координационно связанными дитиокарбаматами $\{M^{II}(Et_2dtc)_2\}_2 \cdot DABCO \ (M = Fe и Mn)$. В первом случае атомы M^{II} в $\{M^{II}(Et_2dtc)_2\}_2$ разделены всего одним атомом серы и короткой аксиальной связью M-S, что приводит к сильным антиферромагнитным взаимодействиям между M^{II} . Увеличение расстояния между M^{II} в $\{M^{II}(Et_2dtc)_2\}_2 \cdot DABCO$ существенно ослабляет магнитное взаимодействие, при этом характер взаимодействия изменяется от антиферромагнитного (5 и 6) к ферромагнитному (11 и 12).

4. Спектры комплексов в ИК-, УФ-видимой и ближней ИК-области

ИК-спектры комплексов **1—16** являются суперпозицией спектров C_{60} , доноров, лигандов и молекул растворителей. Индивидуальный фуллерен C_{60} имеет четыре полосы поглощения (ПП) в ИК-спектре при 527, 577, 1182 и 1429 см $^{-1}$ (моды $F_{1u}(1-4)$ соответственно). Моды $F_{1u}(1-3)$ сохраняют свое положение

в комплексах, в то время как мода $F_{1u}(4)$, наиболее чувствительная к переносу заряда на молекулу фуллерена⁵¹, сдвигается на $1-8~{\rm cm}^{-1}$ в сторону меньших значений. Исходные дитиокарбаматы двухвалентных металлов также имеют интенсивные ПП в интервале $1427-1435~{\rm cm}^{-1}$ и могут давать вклад в поглощение при $1420-1430~{\rm cm}^{-1}$. В этом случае невозможно определить реальный сдвиг моды $F_{1u}(4)$ при образовании комплексов.

Типичные спектры поглощения комплексов и доноров в видимой УФ- и ближней ИК-области показаны на рисунке 9. Исходный $\mathrm{Cu^{II}(Et_2dtc)_2}$ имеет интенсивное поглощение с двумя широкими максимумами в видимой области при 442 и 660 нм (см. рис. 9, b). Это поглощение сохраняется в спектре 2 с основным максимумом при 437 нм (см. рис. 9, a). Полосы поглощения в спектрах 2, 3, 11 и 16 при 340 и


Рис. 9. Спектры поглощения комплексов и доноров в видимой УФ- и ближней ИК-области: $\{Cu^{II}(Et_2dtc)_2\}_2 \cdot C_{60}$ (2) (*a*); исходный $Cu^{II}(Et_2dtc)_2$ (*b*); $\{Cd(Et_2dtc)_2\}_2 \cdot C_{60}$ (3) (*c*); $Zn(Et_2dtc)_2 \cdot C_{60} \cdot (C_6H_5Cl)_{0.5} \cdot (C_6H_6)_{0.5}$ (16) (*d*); $[\{Fe^{II}(Et_2dtc)_2\}_2 \cdot DABCO] \cdot C_{60} \cdot (DABCO)_2$ (11) (*e*).

263 нм (± 2 нм) и слабая ПП при ~600 нм относятся к внутримолекулярным переходам в молекуле C_{60} . 52 Полосу поглощения при 470 нм в спектре C_{60} относят к полосе переноса заряда (ППЗ) между соседними молекулами фуллеренов^{53,54}. Необходимым условием для наблюдения этой ПП в комплексах является плотная упаковка молекул фуллеренов, тогда как в комплексах с изолированными молекулами С₆₀ эта ПП отсутствует 8,55 . Комплексы 2, 3, 11 и 16 имеют плотноупакованные слои С₆₀, и действительно полоса при 470 нм наблюдается в их спектрах. В спектрах комплексов 3 и 11 в видимой и ближней ИК-области наблюдаются дополнительные широкие ПП при 610 и 760 нм соответственно (см. рис. 9, c, e), отсутствующие в спектрах исходных фуллеренов и дитиокарбаматов. Эти полосы связаны с переносом заряда с ВЗМО дитиокарбамата на НСМО фуллерена, что обусловленно перекрыванием этих π-орбиталей в комплексах. Аналогично в спектрах 4—6, 9, 10, 12, 14 также наблюдаются широкие ППЗ в видимой области спектра (600—800 нм). В комплексе $5 \pi - \pi$ -взаимодействие с С₆₀ отсутствует и ППЗ не наблюдается в его спектре (см. рис. 10, d) (ПП при 600 нм по своей интенсивности не отличается от ПП в спектре исходного С₆₀ и, следовательно, может быть отнесена к запрещенным по симметрии переходам в C_{60}). Полосы поглощения, характерные для анион-радикалов C_{60} - при 946—960 и 1070—1080 нм, отсутствуют в спектрах комплексов 1-16, что свидетельствует о молекулярном характере этих комплексов и согласуется с данными ЭПР.

5. Фотопроводимость комплексов

Кристаллы комплексов **2**, **3**, **9** и **14** имеют низкую темновую проводимость $\sigma \approx 10^{-10} - 10^{-11}$ См \cdot см $^{-1}$. Фотовозбуждение кристаллов видимым светом галогеновой лампы в области 260 - 850 нм мощностью 150 Вт и световым потоком $10^{12} - 10^{14}$ фотон \cdot см $^{-2} \cdot$ с $^{-1}$ приводит к увеличению фототока на 2-3 порядка. Эти значения остаются неизменными в течение продолжительного времени (10^4 с) и полностью воспроизводимы, что указывает на отсутствие неравновесных процессов, связанных с фотостимулированными химическими или структурными превращениями материалов.

Спектры фотопроводимости комплексов 2 и 3 показаны на рисунке 10. Фотопроводимость имеет максимумы при 470 нм для 2 и ~660 нм для 3. При облучении комплексов видимым светом в области 260-850 нм может происходить как фотовозбуждение молекулы донора или фуллерена, так и перенос заряда либо между соседними молекулами фуллеренов, либо с молекулы донора на молекулу фуллерена. Эти процессы реализуются при возбуждении светом с разной длиной волны, и сравнение спектров фотопроводимости со спектрами поглощения комплексов позволяет предположить механизмы генерации свободных носителей заряда. Так, в комплексе 2 максимум фотопроводимости близок по положению к ПП $Cu(Et_2dtc)_2$ (437 нм) и ПП, связанной с переносом заряда между молекулами C_{60} (максимум при 470 нм), следовательно, оба этих процесса могут давать вклад

Рис. 10. Спектры фотопроводимости комплексов в области 260—850 нм: $\{Cu^{II}(Et_2dtc)_2\}_2 \cdot C_{60}$ (2) (*a*); $\{Cd(Et_2dtc)_2\}_2 \cdot C_{60}$ (3) (*b*); $\{Zn(Et_2dtc)_2\}_2 \cdot DABCO\} \cdot C_{60} \cdot (DABCO)_2$ (9) (*c*); $\{Zn(Et_2dtc)_2\} \cdot HMTA\}_2 \cdot C_{60} \cdot C_6H_5Cl$ (14) (*d*).

в фотопроводимость. В комплексе 3 положение максимума фотопроводимости близко к положению ППЗ с $\{\text{Cd}(\text{Et}_2\text{dtc})_2\}_2$ на C_{60} (610 нм), тогда как вклад переноса заряда между C_{60} (470 нм) незначителен (см. рис. 10, b). Таким образом, несмотря на схожие кристаллические структуры, механизм генерации свободных носителей заряда в комплексах $\mathbf{2}$ и $\mathbf{3}$ различается.

Максимумы спектров фотопроводимости комплексов **9** и **14** (см. рис. 10, c, d) лежат при 500-600 нм (**9**) и 474 и 685 нм (**14**). В случае **9** основной вклад в генерацию свободных носителей заряда вносит перенос заряда с $\{\text{Zn}(\text{Et}_2\text{dtc})_2\}_2 \cdot \text{DABCO}$ на C_{60} , тогда как в случае **14** это может быть как перенос заряда между молекулами C_{60} (474 нм), так и перенос заряда с $\{\text{Zn}(\text{Et}_2\text{dtc})_2\} \cdot \text{HMTA}$ на C_{60} (685 нм).

* * *

Таким образом, получена серия комплексов С₆₀ и C_{70} с дитиокарбаматами металлов(II) $\{M^{II}(R_2dtc)_2\}$ • \cdot С₆₀, {M^{II}(R₂dtc)₂} \cdot С₇₀ и дитиокарбаматами металлов, координационно связанными с азотсодержащими лигандами, $\{(M^{II}(R_2dtc)_2)_x \cdot L\} \cdot C_{60}$ (1—16). Большинство дитиокарбаматов при сокристаллизации с фуллеренами образуют биядерные структуры $\{M^{II}(Et_2dtc)_2\}_2$ или $\{M^{II}(Et_2dtc)_2\}_2 \cdot L$ (L — DABCO, НМТА), стерически хорошо соответствующие сферической форме молекул C_{60} . В таких комплексах наблюдается эффективное π — π -взаимодействие между фрагментами дитиокарбаматов и C_{60} , а некоторые дитиокарбаматы (M = Cd, Mn, Fe) практически количественно осаждают фуллерены C_{60} и C_{70} в виде комплексов из различных растворителей. При этом двугранный угол в 144—149° между плоскостями MS₂CN в дитиокарбамате является оптимальным для π — π -взаимодействия с C₆₀ (комплексы 3, 4, 10—12). Увеличение или уменьшение двугранных углов в дитиокарбаматах приводит к уменьшению $\pi - \pi$ -взаимодействия (комплексы 1, 2, 13, 15). При эффективном π - π -взаимодействии в комплексах происходит упорядочение молекул C₆₀, а в спектрах появляются полосы переноса заряда с дитиокарбамата металла на C_{60} .

Большинство комплексов фуллеренов с дитиокар-баматами имеют слоистое строение. Расположение молекул фуллеренов в слоях варьируется от гексагонального до квадратного, а сами слои могут быть как плотноупакованными, так и содержать изолированные фуллерены. Упаковка фуллеренов в слоях определяется атомами металлов дитиокарбаматов и длиной их алкильных заместителей. Комплексы C_{60} с $Zn(Et_2dtc)_2$ и $\{Hg(Pr^n_2dtc)_2\}_2 \cdot DMP$ имеют плотную трехмерную упаковку C_{60} .

Дитиокарбаматы Mn^{II} и Fe^{II} являются относительно сильными донорами. Однако в комплексах C_{60} с этими дитиокарбаматами перенос заряда отсутствует. Оптические спектры подтверждают нейтральное основное состояние комплексов 1-16. Изменения в спектрах ЭПР дитиокарбаматов при образовании комплексов с фуллеренами связаны в основном с из-

менением локального окружения атомов металла. Так, образование комплексов 1 и 2 сопровождается слабой координацией атомов Cu^{II} с молекулой C_{60} и уплощением центрального фрагмента $Cu(S_2CN)_2$. Значительные изменения в спектре $\Theta\PiP$ Mn(Et₂dtc)₂ при образовании комплекса 6 скорее всего вызваны переходом от полиядерной структуры исходного дитиокарбамата Mn^{II} к биядерной структуре $\{Mn(Et_2dtc)_2\}_2$ в комплексе **6**. Для биядерной структуры $\{Fe^{II}(Et_2dtc)_2\}_2$ характерна короткая аксиальная связь М-S, через которую передается магнитное взаимодействие, и это может объяснить сильное антиферромагнитное взаимодействие между атомами металлов в комплексах 5 и 6. Наличие длинной аксиальной связи M-S в дитиокарбаматах Cu^{II} (1 и 2) приводит только к слабым антиферромагнитным взаимодействиям. В координационно связанных дитиокарбаматах {M^{II}(Et₂dtc)₂}₂ · DABCO расстояние между атомами металла увеличивается по сравнению с биядерными структурами $\{M^{II}(Et_2dtc)_2\}_2$. Это ослабляет магнитное взаимодействие между атомами металлов в комплексах и меняет антиферромагнитный характер взаимодействия на ферромагнитный.

Комплексы имеют низкую темновую проводимость. Облучение кристаллов комплексов видимым светом приводит к увеличению фототока на 2—3 порядка. Сравнение спектров фотопроводимости со спектрами поглощения комплексов позволяет сделать вывод, что основной вклад в фотогенерацию носителей заряда в комплексе 2 вносит фотовозбуждение $Cu^{II}(Et_2dtc)_2$, а в комплексе $\mathbf{3}$ — перенос заряда \mathbf{c} $Cd(Et_2dtc)_2$ на C_{60} . Различие механизма фотопроводимости в комплексах связано с поглощением света различной длины волны, так как $Cu^{II}(Et_2dtc)_2$ имеет сильное поглощение в видимой области (442 нм), а Cd(Et₂dtc)₂ не имеет. Вместе с тем для Cd(Et₂dtc)₂ наблюдается более эффективное π — π -взаимодействие с C_{60} , чем для $Cu^{II}(Et_2dtc)_2$, и это приводит к появлению ППЗ в спектре 3 при 610 нм. Основной вклад в фотопроводимость комплексов с координационно связанными дитиокарбаматами так же, как и в случае 3, вносит перенос заряда с дитиокарбамата металла на молекулу C_{60} . Ранее было установлено, что если донор имеет интенсивное поглощение в видимой области, как тетрабензо(1,2-бис[4H-тиопиран-4-илиден]этан) (Вz₄ВТРЕ), то фотопроводимость реализуется в комплексе с C_{60} в основном за счет фотовозбуждения донора⁵⁶. При наличии в спектре интенсивной ППЗ, как в TBPDA \cdot (C₆₀)₂ (TBPDA — тетрабензил-п-фенилендиамин), фотопроводимость реализуется в основном за счет переноса заряда с донора на молекулу C_{60} (см. лит.⁵⁷). Определенный вклад в фотопроводимость комплексов вносит и перенос заряда между молекулами фуллеренов, как это наблюдается в кристаллах 58 и пленках 54 С $_{60}$, а также в комплексах С $_{60}$ с В z_4 ВТРЕ 56 и ТВРDА 57 . Условием возникновения фотопроводимости в изученных комплексах являются хорошее стерическое соответствие форм доноров и С₆₀ и их слоистая упаковка, что обеспечивает в комплексах эффективный фотоперенос заряда и позволяет фотоиндуцированным носителям заряда двигаться в кристалле вдоль слоев.

Экспериментальная часть

Использовали диэтилдитиокарбамат натрия Na(Et₂dtc) • • 3 $\mathrm{H}_2\mathrm{O}$, диазабициклооктан (DABCO), N,N'-диметилпиперазин (DMP), гексаметилентетраамин (HMTA) («Aldrich»), ${\rm Zn}({\rm Bu^n}_2{\rm dtc})_2$ («Wako»), фуллерен ${\rm C}_{60}$ чистоты 99.98% и фуллерен С₇₀ чистоты 99.90%. Ди(изопропил)дитиокарбамат натрия, $Na(Pr^{i}_{2}dtc)$, и ди(μ -пропил)дитиокарбамат натрия, Na(Prn2dtc), получены и очищены согласно описанной ранее методике²¹. Безводный диэтилдитиокарбамат натрия, Na(Et₂dtc), получали перекристаллизацией из смеси ацетонитрил—бензол. Дитиокарбаматы $Fe^{II}(Et_2dtc)_2$ и $Mn^{II}(Et_2dtc)_2$, а также их комплексы с фуллеренами чувствительны к кислороду и получены в боксе с инертной атмосферой и содержанием кислорода и воды менее 1 промили. Все растворители после перегонки очищали от кислорода трехкратным циклом замораживание-вакуумирование-заполнение аргоном-размораживание. Дитиокарбаматы металлов получали перемешиванием ~0.7 ммоля безводной соли металла и двух мольных эквивалентов Na(R₂dtc) в 10 мл ацетонитрила в течение 4 ч. Дитиокарбаматы $M(R_2dtc)_2$ выпадают в осадок из ацетонитрила вместе с соответствующими солями натрия. Полученные осадки фильтровали, промывали ацетонитрилом и растворяли в хлорбензоле или толуоле. Соли натрия отделяли фильтрованием, а чистые дитиокарбаматы металлов выделяли, отгоняя растворитель на роторном испарителе. Дихлорбензол $(C_6H_4Cl_2)$, хлорбензол (C_6H_5Cl) и ацетонитрил очищали перегонкой над СаН₂. Гексан перегоняли с использованием Na/бензофенон. Кристаллы комплексов 5, 6, 11 и 12, чувствительные к кислороду, хранили в боксе с инертной атмосферой. Для проведения ЭПР и магнитных измерений соединения запаивали в двухмиллиметровые кварцевые ампулы в атмосфере гелия. Таблетки с КВг для измерения спектров в ИК-, видимой и ближней ИК-области готовили в боксе с инертной атмосферой.

Получение комплексов. Составы комплексов 5—9 определены по данным элементного анализа (табл. 5), а 1—4 и 10—16— по данным РСА. Несколько кристаллов из одного синтеза, протестированных методом РСА, показали одинаковые параметры кристаллической ячейки.

Таблица 5. Состав и данные элементного анализа комплексов **5—9**

Комп-		Найден Вычисл		Вычислено (%)			
	С	Н	Cl	N	M	S	
5	66.02*	2.64	< 0.4	3.87			
	67.44	2.80	_	3.93	7.86	17.97	
6	<u>68.88</u> *	2.59	_	3.69			
	70.05	2.98		3.63	7.13	16.60	
7	<u>86.74</u>	1.48	_	1.44			
	86.67	1.51		1.51	3.42	6.89	
8	<u>87.80</u>	<u>1.95</u>	<u>1.14</u>	<u>1.20</u>			
	87.58	1.72	1.49	1.17	2.68	5.36	
9	<u>66.12</u>	3.84	_	<u>7.97</u>			
	65.95	4.29		7.91	7.39	14.46	

^{*} Содержание углерода меньше рассчитанных значений вследствие чувствительности этих комплексов к кислороду.

Кристаллы комплексов 1, 2, 7, 8, 16 получены выпариванием в течение недели раствора, содержащего C_{60} (25 мг, 0.0347 ммоля) и двукратный мольный избыток дитиокарбамата металла в PhCl (15 мл). Кристаллы промывали ацетоном и сушили на воздухе (выход 50—80%). Кристаллы имеют темно-коричневый или черный цвет и форму ромбов (1), шестигранных пластин (2), тонких иголок (7, 8) и призм (16).

Дитиокарбаматы $Cd(Et_2dtc)_2$, $Mn(Et_2dtc)_2$ и $Fe(Et_2dtc)_2$ практически количественно высаживают фуллерены C_{60} и C_{70} из различных растворителей (C_6H_6 , PhCl и $C_6H_4Cl_2$) в виде соответствующих комплексов. Поэтому кристаллы комплексов $\bf 3$, $\bf 5$ и $\bf 6$ получены методом диффузии. Бензольный раствор фуллерена ($\bf 20$ мл, $\bf 0.0238$ ммоля) наслаивали на $\bf 20$ мл раствора $\bf Cd(Et_2dtc)_2$ в $\bf ChCl_3$ ($\bf 3$) или на $\bf 20$ мл раствора $\bf Mn(Et_2dtc)_2$ или $\bf Fe(Et_2dtc)_2$ в $\bf C_6H_4Cl_2$ ($\bf 5$ и $\bf 6$). Дитиокарбаматы брали в двукратном мольном избытке. Кристаллы комплексов образуются на стенках пробирки для диффузии примерно через $\bf 1$ месяц. Растворитель с кристаллов сливали и промывали их гексаном (выход $\bf 50-60\%$). Кристаллы имеют темно-коричневый цвет и форму ромбов ($\bf 3$) или удлиненных параллелепипедов ($\bf 5$ и $\bf 6$).

Кристаллы комплексов **4**, **9**—**13** получали методом диффузии. Дитиокарбаматы $M(Et_2dtc)_2$ (42—48 мг, 0.105 ммоля) (**4**, **9**, **12**) или $Cd(Pr^i_2dtc)_2$ (**13**) (53 мг, 0.105 ммоля), избыток DABCO (100 мг, 0.9 ммоля) и C_{60} (25 мг, 0.035 ммоля) растворяли в $C_6H_4Cl_2$ (12 мл) в течение 4 ч при 60 °C. Раствор охлаждали, фильтровали в пробирку для диффузии объемом 45 мл и на него наслаивали 30 мл гексана. Диффузию проводили в течение двух месяцев. Кристаллы растут на стенках пробирки в гексановой части раствора. Комплексы **9**—**13** содержат координационно связанные димеры с DABCO, однако по данным PCA DABCO не входит в состав комплекса **4** ($\{Hg(Et_2dtc)_2\}_2 \cdot C_{60}$).

Кристаллы $[\{Hg(Pr^n_2dtc)_2\}_2 \cdot DMP] \cdot (C_{60})_5 \cdot (C_6H_5Cl)_4$ (15) получены концентрированием хлорбензольного раствора (15 мл), содержащего $Hg(Pr^n_2dtc)_2$ (58 мг, 0.105 ммоля), C_{60} (25 мг, 0.035 ммоля) и избыток DMP (1 мл). Упаривание растворителя в течение 1 недели привело к образованию кристаллов 15 в виде черных призм размером до $2 \times 1 \times 0.5$ мм, которые отфильтровали и промыли ацетоном (выход 75%).

Кристаллы [$\{Zn(Et_2dtc)_2\} \cdot HMTA\}_2 \cdot C_{60} \cdot C_6H_5Cl$ (14) получены концентрированием 16 мл раствора C_6H_5Cl/C_6H_5CN (15 : 1), содержащего $Zn(Et_2dtc)_2$ (38 мг, 0.105 ммоля), C_{60} (25 мг, 0.035 ммоля) и избыток HMTA (40 мг, 0.28 ммоля). После концентрирования раствора до 1—2 мл растворитель сливали и кристаллы промывали ацетоном. Получены черные призмы с выходом 80%.

Спектры комплексов в видимой УФ- и ближней ИК-областях измеряли на приборе «Shimadzu-3100» в интервале 240—2600 нм в таблетках с КВг. ИК-спектры измеряли на приборе «Perkin-Elmer 1000» в интервале 400—7800 см $^{-1}$ в таблетках с КВг. Магнитные свойства комплексов 1, 2, 5, 6, 11, 12 исследовали на СКВИД-магнитометре «Quantum Design MPMS-XL» в интервале 1.9—300 К в магнитном поле 100 мТл. Вклад держателя образца и диамагнитный вклад (χ_0) были вычтены из экспериментальных данных. Значения Θ и χ_0 вычислены подгонкой экспериментальных данных по формуле

$$\chi_{\rm M} = C/(T - \Theta) + \chi_0.$$

Для комплексов **1** и **2** использовали экспериментальные данные в интервале 10-300 K, для **11** и **12** — в интервале 50-300 K, для **6** — в интервале 150-300 K и для **5** — в интервале 200-300 K. Спектры ЭПР записаны при 295 и 4 K на приборе «JEOL JES-TE 200». Спектры

Таблица 6. Основные кристаллографические данные комплексов 4, 10—12

Параметр	4	10	11	12
Формула	$C_{88}H_{40}Hg_2N_4S_8$	C ₉₈ H ₇₆ Cd ₂ N ₁₀ S ₈	$C_{98}H_{76}Mn_2N_{10}S_8$	$C_{98}H_{76}Fe_{2}N_{10}S_{8}$
M	1714.82	1870.94	1760.05	1757.84
Сингония	Моноклинная	Орторомбическая	Орторомбическая	Орторомбическая
Пространственная группа	$P2_1/n$	Pbam	Pbam	Pbam
a/Å	16.1521(5)	10.4576(3)	10.44310(4)	10.3490(4)
b/Å	16.9573(4)	17.0583(5)	17.0608(6)	16.9698(7)
c/Å	10.5560(3)	20.9776(5)	20.9215(7)	20.8387(9)
α/град	90	90	90	90
β/град	99.7330(10)	90	90	90
γ/град	90	90	90	90
$V/\text{Å}^3$	2849.63(14)	3742.2(2)	3726.8(2)	3659.7(3)
Z	2	2	2	2
$d_{\rm calc}/\Gamma \cdot {\rm cm}^{-3}$	1.999	1.660	1.568	1.595
μ/MM^{-1}	5.733	0.854	0.626	0.689
$T_{\rm exp}/{ m K}$	100(2)	90(1)	100(2)	90(1)
2θ _{max} /град	56.56	77.46	56.56	68.65
Число отражений	23241	165581	24899	73217
Число независимых отражений	6956	10623	4708	7539
Число параметров /ограничений	429/0	292/0	305/3	292/0
Число отражений с интенсивностью $I > 2\sigma(I)$	- 6294	9580	4415	6663
R -Фактор $(I > 2\sigma(I))$	0.0218	0.0237	0.0364	0.0342
wR	0.0711	0.0681	0.1130	0.1565
CCDC	638243	614489	638245	614490

Таблица 7. Основные кристаллографические данные комплексов 13—15

Параметр	13	14	15
Формула	C ₁₀₀ H _{80.80} Cd ₂ Cl _{0.24} N ₆ S ₈	C ₉₈ H ₆₉ ClN ₁₂ S ₈ Zn ₂	C ₃₅₈ H ₉₀ Cl ₄ Hg ₂ N ₆ S ₈
M	1856.29	1837.32	5273.82
Сингония	Орторомбическая	Триклинная	Моноклинная
Пространственная группа	Ibam	$P\overline{1}$	$P2_1/n$
a/Å	11.7155(3)	10.3921(4)	16.9422(11)
b/Å	16.5374(4)	16.9217(6)	20.1412(13)
c/Å	42.0900(8)	22.3916(8)	29.786(2)
α/град	90	84.1470(10)	90
β/град	90	76.6500(10)	94.9170(10)
γ/град	90	89.8850(10)	90
$V/\mathrm{\AA}^3$	8154.7(3)	3810.3(2)	10126.6(11)
Z	4	2	2
$d_{\rm calc}/\Gamma \cdot {\rm cm}^{-3}$	1.512	1.601	1.730
μ/MM^{-1}	0.790	0.948	1.731
$T_{\rm exp}/{ m K}$	100(2)	95(2)	100(2)
2θ _{тах} /град	54.96	54.2	56.5
Число отражений	30288	24119	52049
Число независимых отражений	4704	16328	24480
Число параметров /ограничений	442/373	1153/115	1776/1825
Число отражений с интестивностью $I > 2\sigma(I)$	н- 4126	14634	21358
R -Фактор $(I \ge 2\sigma(I))$	0.0252	0.0376	0.0561
wR	0.0618	0.0885	0.1501
CCDC	638242	638246	638244

фотопроводимости получены при 293 К с использованием света ксеноновой лампы, пропущенного через монохроматор. Для исследования влияния магнитного поля на фотопроводимость комплексы облучали белым светом галогеновой лампы интенсивностью 10^{12} — 10^{14} фотонов \cdot см $^{-2} \cdot$ с $^{-1}$. Монокристалл в кварцевой ампуле помещали в ячейку стандартного ЭПР-спектрометра «RadioPan SE/X 2547». Напряжение на серебряных контактах, подклеенных к одной поверхности кристалла, составляло 10—50 В.

Рентгеноструктурный анализ. Рентгеноструктурные данные для комплексов 4, 10—15 получены на дифрактометре «Bruker Nonius X8» с ССD-детектором (Мо-Ка-излучение, $\lambda = 0.71073 \text{ Å}$), оборудованном криостатом «Oxford Сryosystems» (φ- и ω-сканирование с шириной фрейма 0.3° и выдержкой 30 с на фрейм). Данные были проинтегрированы, отсортированы и усреднены с использованием программного пакета Bruker AXS⁵⁹. Учет поглощения проводили с использованием программы SADABS⁶⁰. Структуры определены прямым методом с использованием программы SHELX 9761 и уточнены методом наименьших квадратов по F^2 . Неводородные атомы уточнены в анизотропном приближении. Положение атомов водорода вычисляли геометрически. Основные кристаллографические данные, включая номера в Кембриджском банке рентгеноструктурных данных для комплексов 4, 10—15, даны в таблицах 6 и 7. Для комплексов 1 (CCDC 288292), 2 (CCDC 260289), 3 (CCDC 286144) и **16** (CCDC 288291) кристаллографические данные опубликованы ранее^{31,32}.

Молекулы C_{60} и дитиокарбаматов металлов упорядочены почти во всех комплексах. В комплексе 13 молекулы C_{60} разупорядочены между двумя ориентациями с заселенностью 0.75/0.25. Одна из трех кристаллографически независимых молекул C_{60} в 15 статистически разупорядочена. Молекула DABCO статистически разупорядочена в комплексах 10—13 между двумя ориентациями, связанными вращением DABCO на 60° вокруг оси, проходящей через два атома азота. Молекула растворителя PhCl разупорядочена по четырем ориентациями в комплексе 14. В комплексе 4 позицию молекул растворителя занимают разупорядоченный гексан (84%) и $C_6H_4Cl_2$ (16%). В комплексе 15 присутствует две позиции молекул PhCl. В одной позиции молекула PhCl разупорядочена по двум ориентациями, в другой — по трем ориентациями.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 06-03-32824, № 06-03-91361 и № 06-02-96323), INTAS (грант для молодых ученых YSF 05-109-4653), Совета по грантам при Президенте Российской Федерации (программа государственной поддержки ведущих научных школ и молодых ученых, грант МК-932.2007.2) и Российского фонда поддержки отечественной науки.

Список литературы

- 1. Д. В. Конарев, Р. Н. Любовская, *Успехи химии*, 1999, **68**, 23 [*Russ. Chem. Rev.*, 1999, **68**, 19 (Engl. Transl.)].
- 2. D. M. Guldi, Chem. Soc. Rev., 2002, 31, 22.
- 3. B. Gotschy, Fullerene Sci. Technol., 1996, 4, 677.
- D. V. Konarev, Yu. V. Zubavichus, E. F. Valeev, Yu. L. Slovokhotov, Yu. M. Shul'ga, and R. N. Lyubovskaya, Synth. Met., 1999, 103, 2364.
- A. L. Litvinov, D. V. Konarev, A. Yu. Kovalevsky, I. S. Neretin, Yu. L. Slovokhotov, P. Coppens, and R. N. Lyubovskaya, Cryst. Eng. Comm., 2002, 4, 618.

- Г. А. Домрачев, Ю. А. Шевелев, В. К. Черкасов, Г. Ф. Фукин, Г. В. Маркин, А. И. Кирилов, Изв. АН. Сер. хим., 2006, 220 [Russ. Chem. Bull., Int. Ed., 2006, 55, 225].
- A. Izuoka, T. Tachikawa, T. Sugawara, Y. Suzuki, M. Konno, Y. Saito, and H. Shinohara, J. Chem. Soc., Chem. Commum., 1992, 1472.
- D. V. Konarev, R. N. Lyubovskaya, N. V. Drichko, E. I. Yudanova, Yu. M. Shul'ga, A. L. Litvinov, V. N. Semkin, and B. P. Tarasov, *J. Mat. Chem.*, 2000, 803.
- С. В. Коновалихин, О. Н. Дьяченко, Г. В. Шилов, Н. Г. Спицина, К. В. Ван, Э. Б. Ягубский, Изв. АН. Сер. хим., 1997, 1480 [Russ. Chem. Bull., 1997, 46, 1415 (Engl. Transl.)].
- В. А. Надточенко, В. В. Гриценко, О. Н. Дьяченко, Г. В. Шилов, А. П. Моравский, Изв. АН. Сер. хим., 1996, 1285 [Russ. Chem. Bull., 1996, 45, 1224 (Engl. Transl.)].
- D. V. Konarev, A. Yu. Kovalevsky, A. L. Litvinov, N. V. Drichko, B. P. Tarasov, P. Coppens, and R. N. Lyubovskaya, J. Solid State Chem., 2002, 168, 474.
- Е. И. Юданова, Д. В. Конарев, Р. Н. Любовская, Л. Л. Гуманов, *Изв. АН. Сер. хим.*, 1999, 722 [Russ. Chem. Bull., 1999, 48, 718 (Engl. Transl.)].
- M. M. Olmstead, D. A. Costa, K. Maitra, B. C. Noll, S. L. Phillips, P. M. Van Calcar, and A. L. Balch, *J. Am. Chem. Soc.*, 1999, 121, 7090.
- 14. D. V. Konarev, I. S. Neretin, Yu. L. Slovokhotov, E. I. Yudanova, N. V. Drichko, Yu. M. Shul'ga, B. P. Tarasov, L. L. Gumanov, A. S. Batsanov, J. A. K. Howard, and R. N. Lyubovskaya, *Chem. Eur. J.*, 2001, 7, 2605.
- 15. A. L. Balch and M. M. Olmstead, *Chem. Rev.*, 1998, **98**, 2123.
- D. V. Konarev, I. S. Neretin, A. L. Litvinov, N. V. Drichko, Yu. L. Slovokhotov, R. N. Lyubovskaya, J. A. K. Howard, and D. S. Yufit, *Cryst. Growth Des.*, 2004, 4, 643.
- A. L. Litvinov, D. V. Konarev, A. Yu. Kovalevsky, P. Coppen, and R. N. Lyubovskaya, *Cryst. Growth Des.*, 2005, 5, 1807.
- D. V. Konarev, S. S. Khasanov, A. Otsuka, G. Saito, and R. N. Lyubovskaya, *Chem. Eur. J.*, 2006, **12**, 5225.
- D. V. Konarev, S. S. Khasanov, A. Otsuka, G. Saito, and R. N. Lyubovskaya, *J. Am. Chem. Soc.*, 2006, **128**, 9292.
- D. V. Konarev, S. S. Khasanov, G. Saito, A. Otsuka, and R. N. Lyubovskaya, *Inorg. Chem.*, 2007, 46, 7601.
- 21. F. Jian, Z. Wang, Z. Bai, X. You, H.-K. Fun, K. Chinnakali, and I. A. Razak, *Polyhedron*, 1999, **18**, 3401.
- A. Domenicano, L. Torelli, A. Vaciago, and L. Zambonelli, J. Chem. Soc. A, 1968, 1351.
- F. Jian, Z. Wang, Z. Bai, X. You, H.-K. Fun, and K. Chinnakali, *J. Chem. Cryst.*, 1999, 29, 227.
- A. Ileperuma and R. D. Feltham, *Inorg. Chem.*, 1975, 14, 3042.
- M. Bonamico, G. Mazzone, A. Vaciago, and L. Zambonelli, *Acta Crystallogr.*, 1965, 19, 898.
- N. Sreehari, B. Varghese, and P. T. Manoharan, *Inorg. Chem.*, 1990, 29, 4011.
- H. L. M. Van Gaal and J. G. M. Van der Linden, *Coord. Chem. Rev.*, 1982, 47, 41.
- 28. H. H. Wickman, A. M. Trozzolo, H. J. Williams, G. W. Hull, and F. R. Merritt, *Phys. Rev.*, 1967, **155**, 563.
- M. Decoster, F. Conan, J. E. Guerchais, Y. Le Mest, J. Sala Pala, J. C. Jeffery, E. Faulques, A. Leblanc, and P. Molinié, *Polyhedron*, 1995, 14, 1741.
- 30. F. Conan, J. Sala Pala, M.-T. Garland, and R. Baggio, *Inorg. Chem. Acta*, 1998, **278**, 108.
- D. V. Konarev, A. Yu. Kovalevsky, D. V. Lopatin, V. V. Rodaev, A. V. Umrikhin, E. I. Yudanova, P. Coppens, R. N. Lyubovskaya, and G. Saito, *Dalton Trans.*, 2005, 1821.
- D. V. Konarev, A. Yu. Kovalevsky, S. S. Khasanov, G. Saito,
 D. V. Lopatin, A. V. Umrikhin, A. Otsuka, and R. N. Lyubovskaya, *Eur. J. Inorg. Chem.*, 2006, 1881.

- D. V. Konarev, A. Yu. Kovalevsky, A. Otsuka, G. Saito, and R. N. Lyubovskaya, *Inorg. Chem.*, 2005, 44, 9547.
- 34. S.-H. Liu, X.-F. Chem, X.-H. Zhu, C.-Y. Duan, and X.-Z. You, *J. Coord. Chem.*, 2001, **53**, 223.
- 35. C. S. Lai and E. R. T. Tiekink, *Appl. Organomet. Chem.*, 2003, 17, 251.
- 36. Л. А. Глинская, С. М. Земскова, Р. Ф. Клевцова, С. В. Ларионов, *Журн. структур. химии*, 1996, **37**, 176 [*J. Struct. Chem.*, 1996, **37**, 155 (Engl. Transl.)].
- 37. А. В. Иванченко, С. А. Громилов, С. М. Земскова, И. А. Байдина, *Журн. структур. химии*, 2000, **41**, 106 [*J. Struct. Chem.*, 2000, **41**, 88 (Engl. Transl.)].
- 38. D. Zeng, M. J. Hampden-Smith, T. M. Alam, and A. L. Rheingold, *Polyhedron*, 1994, **13**, 2715.
- P. C. Healy and A. H. White, J. Chem. Soc., Dalton Trans., 1973, 284.
- M. Ciampolini, C. Mengozzi, and P. Orioli, J. Chem. Soc., Dalton Trans., 1975, 2051.
- 41. R. S. Rowland and R. Taylor, J. Phys. Chem., 1996, 100, 7384.
- H.-B. Bürgi, E. Blanc, D. Schwarzenbach, S. Liu, Y. Lu, M. M. Kappes, and J. A. Ibers, *Angew. Chem., Int. Ed. Engl.*, 1992, 31, 640.
- O. Kennard, CRC Handbook of Chemistry and Physics, Ed. R. C. Weast, CRC Press, Inc., Boca Raton, Florida, 1987, F105.
- 44. S. V. Khangulov, A. J. Dessiki, V. V. Barynin, D. E. Ass, and G. C. Dismukes, *Biochemistry*, 1995, **34**, 2015.
- I. Romero, M.-N. Collomb, A. Deronyier, A. Llobet,
 E. Perret, J. Pèkaut, L. Le Pare, and J.-M. Latour, *Eur. J. Inorg. Chem.*, 2001, 69.
- 46. C. A. Reed and R. D. Bolskar, Chem. Rev., 2000, 100, 1075.
- D. Dubois, K. M. Kadish, S. Flanagan, R. E. Haufler, L. P. F. Chibante, and L. J. Wilson, *J. Am. Chem. Soc.*, 1991, 113, 4364.
- 48. H. Miyasaka, N. Matsumoto, N. Re, E. Gallo, and C. Floriani, *Inorg. Chem.*, 1997, 36, 670.

- H. J. Choi, J. J. Solol, and J. R. Long, *Inorg. Chem.*, 2004,
 1606.
- 50. J. Zhang and A. Lachgar, J. Am. Chem. Soc., 2007, 129, 250.
- T. Picher, R. Winkler, and H. Kuzmany, *Phys. Rev. B*, 1994, 49, 15879.
- M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Sci. Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1996.
- M. Ichida, A. Nakamura, H. Shinohara, and Y. Saito, *Chem. Phys. Lett.*, 1998, 289, 579.
- 54. S. Kazaoui, N. Minami, Y. Tanabe, H. J. Byrne, A. Eilmes, and P. Petelenz, *Phys. Rev. B*, 1998, **58**, 7689.
- D. V. Konarev, N. V. Drichko, R. N. Lyubovskaya, Yu. M. Shul'ga, A. L. Litvinov, V. N. Semkin, Yu. A. Dubitsky, and A. Zaopo, *J. Mol. Struct.*, 2000, 526, 25.
- D. V. Konarev, D. V. Lopatin, V. V. Rodaev, A. V. Umrikhin,
 S. S. Khasanov, G. Saito, K. Nakasuji, A. L. Litvinov, and
 R. N. Lyubovskaya, J. Phys. Chem. Solids, 2005, 66, 711.
- D. V. Lopatin, V. V. Rodaev, A. V. Umrikhin, D. V. Konarev,
 A. L. Litvinov, and R. N. Lyubovskaya, *J. Mat. Chem.*, 2005,
 15, 657.
- 58. Yu. A. Ossipyan, Yu. I. Golovin, D. V. Lopatin, R. B. Morgunov, R. K. Nikolaev, and S. Z. Shmurak, *Phys. Stat. Sol. B*, 2001, **223**, R14.
- Bruker Analytical X-ray Systems, Madison, Wisconsin, USA, 1999.
- Z. Otwinowski and W. Minor, in *Processing of X-ray Diffraction Data Collection in Oscillation Mode, Methods in Enzymology*, Eds C. W. Carter and R. M. Sweet, Academic Press, 1997, 276.
- 61. G. M. Sheldrick, *SHELX 97*, University of Göttingen, Germany, 1997.

Поступила в редакцию 28 июня 2007; после доработки— 4 сентября 2007