УДК 593.194;547.435

Магнитные свойства солей фуллеренов с катионами d- и f-металлов (Co²⁺, Ni²⁺, Fe²⁺, Mn²⁺, Eu²⁺ и Cd²⁺). Особенности взаимодействия C₆₀^{•-} с катионами металлов

Д. В. Конарев, * Р. Н. Любовская

Институт проблем химической физики Российской академии наук, Российская Федерация, 142432 Черноголовка Московской обл., просп. Акад. Семенова, 1. Факс: (496) 522 1852. E-mail: konarev@icp.ac.ru

Исследовано взаимодействие анион-радикалов C_{60} ⁻⁻ с катионами двухвалентных d- и f-металлов (Co, Fe, Ni, Mn, Eu и Cd) в ДМФА и смеси ацетонитрил—бензонитрил (AN—BN). Впервые в твердом виде получены черные поликристаллические соли, содержащие анион-радикалы C_{60} ⁻⁻ и катионы металлов(II), сольватированные ДМФА: $(C_{60}^{--})_2\{(M^{2+})(DMF)_x\}$ (x = 2.4-4, **1**–6) и изучены их оптические и магнитные свойства. В солях, содержащих Co^{2+} , Fe^{2+} и Ni²⁺, наблюдаются антиферромагнитные взаимодействия между C_{60}^{--} , приводящие к необычно большому уширению сигнала ЭПР C_{60}^{--} при понижении температуры (от 5.55–12.6 мТл при комнатной температуре до 35–40 мТл при 6 K в случае Co^{2+} и Ni²⁺). В солях, содержащих Mn^{2+} и Eu²⁺, образуются диамагнитные димеры (C_{60}^{--})₂, что вызывает скачкообразное уменьшение магнитного момента комплексов и исчезновение сигнала ЭПР C_{60}^{--} в интервале температур 210–130 К. Использование диамагнитного катиона Cd^{2+} обусловливает магнитную изоляцию анион-радикалов C_{60}^{--} в соли 6. Полученные соли нестабильны на воздухе и разлагаются в *о*-дихлорбензоле или AN. Реакция C_{60}^{--} с катионами металлов(II) в смеси AN—BN приводит к получению только продуктов разложения солей, содержащих нейтральные димеры фуллерена и металлы, сольватированные BN.

Ключевые слова: ион-радикальные соли, фуллерен C_{60} , катионы металлов(II), магнитные свойства, антиферромагнитные взаимодействия, димеризация C_{60} .⁻, спектроскопия ЭПР.

Ионные соединения фуллеренов проявляют такие свойства, как сверхпроводимость и ферромагнетизм¹⁻³. Особый интерес представляют соли фуллеренов с парамагнитными d- и f-металлами. В этих солях наблюдается высокая проводимость или дальний магнитный порядок с упорядочением спинов. Особенно интересно, что указанные явления могут сосуществовать в одном соединении4-7. Так, допирование C₆₀ f-металлами в газовой фазе привело к получению сверхпроводников $M_{2.75} \cdot C_{60}$ (M = Yb и Sm) с температурой сверхпроводящего перехода (T_c) до 6 К.4,5 При допировании фуллеренов европием получена ферромагнитная фаза Eu₆C₆₀ с $T_{\rm c} = 14$ К.⁶ Установлено сосуществование сверхпроводимости и ферромагнетизма в Ce_x · C₆₀.⁷ В растворе жидкого аммиака получены в виде кристаллов и структурно охарактеризованы⁸⁻¹⁰ соли дианионов C₆₀²⁻ с катионами двухвалентных металлов $\{(M^{2+})(NH_3)_{6(7)}\}(C_{60}^{2-})(NH_3)_3$, где M = Cd, Mn, Co, Zn, Ni и Ba. Эти соли нестабильны при комнатной температуре и разлагаются с потерей аммиака; видимо, поэтому их свойства не были изучены. Дианион C₆₀²⁻ использовали как интермедиат для получения металлоорганических соединений платины в присутствии фосфорсодержащих лигандов¹¹. При низких температурах дианион C_{60}^{2-} имеет диамагнитное синглетное основное состояние (S = 0), тогда как возбужденное триплетное состояние (S = 1) в некоторых случаях незначительно заселяется только при температурах, близких к комнатной 12,13. Поэтому появление магнитного упорядочения спинов или высокой проводимости в солях катионов металлов с дианионами C₆₀²⁻ маловероятно. С точки зрения создания проводящих и магнитных материалов получение солей с анион-радикалами C₆₀.- гораздо более перспективно, поскольку они, имея спиновое состояние S = 1/2, могут обеспечить магнитный обмен между парамагнитными центрами. В то же время известно, что некоторые соли С₆₀.- обладают высокой проводимостью металлического типа¹⁴⁻¹⁶. Однако до настоящего времени соли фуллеренов, содержащие анион-радикалы C_{60} . и катионы d- или f-металлов, в твердом виде не были получены. Исследовано взаимодействие C_{60} с анионными карбонилами металлов в $T\Gamma \Phi$, такими как $(Cat^{+}){Co(CO)_{4}^{-}}, (Cat^{+}){Mn(CO)_{5}^{-}}, (Cat^{+}){Re(CO)_{5}^{-}}$ (катион $Cat^+ = Na^+$ или PPN⁺ (бис(трифенилфосфоранилиден)аммоний))¹⁷⁻¹⁹. Высказано предположение, что сначала анионные карбонилы металлов восстанавливают C₆₀ до анион-радикального состоя-

^{© 2008 «}Известия Академии наук. Серия химическая», Российская академия наук, Отделение химии и наук о материалах Российской академии наук, Институт органической химии им. Н. Д. Зелинского Российской академии наук

ния, а затем происходит координация образующихся радикалов 'M(CO)₄₍₃₎ к аниону фуллерена по η^2 -типу с образованием ионных комплексов $(Cat^{+}){M(CO)_{4(3)}(\eta^2 - C_{60})^{-}}$ (M = Co, Mn и Re). Установлена¹⁹ кристаллическая структура соли $(PPN^+){Mn(CO)_4(\eta^2-C_{60})^-}$. Поскольку в спектрах этих соединений в ближней ИК-области нет полос поглощения, относящихся к С₆₀.-, то полагают, что все соли содержат нейтральный фуллерен и анионный карбонилат металла¹⁷⁻¹⁹. Соединения фуллеренов с металлами платиновой группы могут быть получены в виде пленок Pd_xC_{60} и Pt_xC_{60} электрохимическим восстановлением солей Pd²⁺ и Pt²⁺ в присутствии С₆₀. Пленки М_xС₆₀ имеют полимерную природу и содержат нейтральные фуллерены и металлы в нулевой степени окисления^{20,21}. Аналогичные полимеры $M_x C_{60}$ (M = Pt, Pd) могут быть синтезированы при взаимодействии нейтрального фуллерена с координационными соединениями платины и палладия в нулевой степени окисления^{22,23}.

В данной работе впервые изучено взаимодействие анион-радикалов С₆₀.- с катионами двухвалентных d- и f-металлов (Co, Fe, Ni, Mn, Eu и Cd) в ДМФА и смеси ацетонитрил-бензонитрил (AN-BN). Показано, что из концентрированных растворов ДМФА кристаллизуются соли, содержащие анион-радикалы С₆₀.- и катионы металлов(II), сольватированные ДМФА (1-6). Эти соли охарактеризованы элементным анализом, спектрами в ИК-, ближней ИК-, видимой и УФ-областях, а также спектрами ЭПР в интервале 4-295 К. Для двух солей проведены магнитные измерения на СКВИД-магнитометре. Показано, что в солях наблюдаются сильные магнитные взаимодействия как между анионами фуллеренов, так и между катионами металлов(II). Теми же методами исследованы поликристаллические осадки, полученные в смеси AN-BN. Проведено сравнение свойств соединений, полученных в ДМФА и смеси AN-BN, что позволило установить существенное различие продуктов реакции С₆₀.- с катионами металлов(II) в этих растворителях.

Экспериментальная часть

Спектры в УФ-, видимой и ближней ИК-областях регистрировали в таблетках с КВг на спектрофотометре «Shimadzu-3100» в интервале 240-2600 нм. ИК-спектры получали в таблетках с KBr на спектрометре «Perkin-Elmer 1000» в интервале 400-7800 см⁻¹ с разрешением 1 см⁻¹. Спектры ЭПР регистрировали на спектрометре «JEOL JES-TE 200 X-band», оборудованном криостатом «JEOL ES-CT470», в интервале температур 4—295 К. Магнитные свойства соединений 4 и 5 исследовали на СКВИД-магнитометре «Quantum Design MPMS-XL» в интервале 1.9-300 К в магнитном поле 100 мТл. Вклад держателя образца и диамагнитный вклад (χ_0) вычтены из экспериментальных данных. Значения *C*, θ и χ_0 вычислены по формуле $\chi_M = C/(T - \theta) + \chi_0$ с использованием экспериментальных данных по мольной магнитной восприимчивости (χ_M) в температурном интервале 15-150 К.

Для получения соединений применяли безводные соли металлов MnI_2 , FeBr₂, CoBr₂, NiI₂, CdBr₂ и EuI₂ (все

«Aldrich»), С₆₀ (чистота 99.9%) и металлический цезий («Aldrich»). Растворители очищали в атмосфере аргона. N,N-Диметилформамид («Aldrich») перегоняли под вакуумом над молекулярными ситами, бензонитрил — над Na, o-дихлорбензол — над CaH₂, ацетонитрил — над CaH₂, P₂O₅ и K₂CO₃. Растворители перед использованием дегазировали. Все действия при получении соединений проводили в боксе с инертной атмосферой «МВгаип 150В-G» с содержанием H₂O и O₂ менее 1 промилле. Соединения хранили в боксе с инертной атмосферой, ЭПР- и СКВИД-измерения проводили в запаянных кварцевых капиллярах диаметром 2 мм. Таблетки с КВг для спектров в ИК-, УФ-, видимой и ближней ИК-областях готовили в анаэробных условиях.

Синтез солей $(C_{60}^{*-})_{2}\{(M^{2+})(DMF)_{x}\}$ (x = 2.4-4) (1-6) в ДМФА (общая методика). Растворяли 100 мг С₆₀ (0.1387 ммоля) и металлический цезий (18.9 мг, 0.1387 ммоля) в 5 мл ДМФА при 50 °C в течение 6 ч. Раствор охлаждали до ~20 °C. Спектр раствора в ближней ИК-области соответствовал восстановлению C₆₀ до анион-радикального состояния; таким образом, в растворе образуется соль $(Cs^+)(C_{60}^{\cdot -})$. К раствору добавляли соль металла(п) (0.1387 ммоля) и перемешивали 4 ч при ~20 °С. Для соединений 1 и 2 сразу образуются черные осадки. Соли 4-6 выпадали лишь частично. В этом случае в раствор добавляли 5 мл AN, что приводило к дополнительному выпадению осадка чернокоричневого цвета. Осадки отфильтровывали, промывали AN (5 мл) и сушили при ~20 °С (выходы до 80% для 1 и 2 и 30-50% для 4-6). По данным элементного анализа состав солей может быть определен только приблизительно (табл. 1). Это связано с неустойчивостью солей 1-6 на воздухе и их окислением во время проведения элементного анализа. Окисление анион-радикалов $C_{60}^{\,\cdot-}$ может проис-ходить по схеме $C_{60}^{\,\cdot-} + O_2 \rightarrow (C_{60}^{\,\cdot} O_2^{\,-})^{24}$, поэтому следует ожидать присоединения двух молекул кислорода на формульную единицу образца и содержание (%) C, H и N было рассчитано на состав (формульная единица + О₄). Аналогичная ситуация наблюдалась при элементном анализе большинства ионных соединений С₆₀, неустойчивых к окислению²⁵⁻²⁷. С учетом данных оптической спектроскопии (см. ниже) получены составы солей 1-6, которые представлены в таблице 1.

Получение продуктов взаимодействия $C_{60}^{\bullet-}$ с солями металлов(II) (M = Fe, Mn, Co и Cd) в смеси AN—BN. Смесь 50 мг (0.0693 ммоля) C_{60} и 9.5 мг (0.0693 ммоля) металли-

Таблица 1. Данные элементного анализа для солей 1-6

Соль	<u>Найдено</u> (%) Вычислено		
	С	Н	Ν
$(C_{60})_2 Co(DMF)_{3.3}$ (1)*	86.14	<u>1.12</u>	<u>2.48</u>
	86.42	1.28	2.56
$(C_{60})_2 Ni(DMF)_4$ (2)	<u>85.88</u>	<u>1.52</u>	<u>2.94</u>
	86.47	1.40	2.80
$(C_{60})_2$ Fe(DMF) ₄ (3)**	<u>84.93</u>	<u>1.75</u>	<u>2.83</u>
	85.54	1.51	3.02
$(C_{60})_2$ Mn(DMF) _{3.5} (4)	<u>85.62</u>	<u>1.61</u>	<u>2.77</u>
	86.25	1.34	2.72
$(C_{60})_2 Eu(DMF)_4$ (5)	<u>78.89</u>	<u>1.93</u>	<u>2.92</u>
	80.69	1.49	2.97
$(C_{60})_2 Cd(DMF)_{2.5}$ (6)	<u>86.36</u>	<u>1.13</u>	1.82
	85.04	0.97	1.95

* Содержание Br <0.7%. ** Содержание I < 1.2%.

ческого цезия растворяли в 10 мл ВN при 50 °С в течение 4 ч. Раствор охлаждали до ~20 °С и фильтровали. Спектрофотометрически подтверждено, что восстановление C_{60} происходит до анион-радикального состояния с образованием в растворе (Cs⁺)(C₆₀^{•-}). Отдельно в 10 мл AN растворяли 0.0693 ммоля соли металла(II) и полученный раствор фильтровали в раствор (Cs⁺)(C₆₀^{•-}). Раствор моментально обесцвечивался и количественно выпадал осадок светло-коричневого цвета. Осадок отфильтровывали, промывали AN (10 мл) и сушили.

Обсуждение полученных результатов

Синтез в ДМФА и смеси AN-BN. Соли $(C_{60}^{-})_{2}\{(M^{2+})(DMF)_{x}\}$ (x = 2.4—4) (1—6) получены в анаэробных условиях реакцией катионного обмена в ДМФА между (Cs⁺)(C₆₀⁻⁻) и солью металла $M^{II}(Hal)_2$, где Hal = Cl, Br, I. Соли **1—6** хуже растворимы в $\bar{J}M\Phi A$, чем (Cs⁺)(C₆₀^{•-}), и выпадают из концентрированных растворов. Все соли получены в виде черных или черно-коричневых порошков. Нами отмечено, что в чистом AN соли медленно (в течение часов) разлагаются с потерей ДМФА (по данным элементного анализа на азот) и изменением цвета осадка от черного или черно-коричневого до светло-коричневого, поэтому следует избегать избытка AN при осаждении солей и их промывке. Разложение солей наблюдается и в других слабо координирующих растворителях, например в о-дихлорбензоле. Нагревание солей в o-Cl₂C₆H₄ приводит к их постепенному растворению, из этого раствора AN осаждается светло-коричневый порошок, уже нерастворимый в ДМФА. В твердом состоянии соли устойчивы в анаэробных условиях (в течение нескольких месяцев не было замечено следов разложения), их растворы в ДМФА также устойчивы продолжительное время. При этом 20 мг соли может быть снова целиком растворено в 20 мл ДМФА. Это указывает на то, что при хранении в солях не образуется полимеров.

Кристаллы солей **1—6**, пригодные для РСА, нам не удалось вырастить. Медленная диффузия (в течение месяца) раствора соли металла в AN в раствор $(Cs^+)(C_{60}^{,-})$ в ДМФА приводит к получению кристаллов плохого качества, помимо кристаллов получается большое количество светло-коричневого осадка, что связано, по-видимому, с разложением солей в AN.

Реакцию анион-радикалов C_{60} с катионами металлов(II) (M = Fe^{II}, Co^{II}, Cd^{II} и Mn^{II}) исследовали также в смеси AN—BN. Добавление раствора соли металла(II) в AN к раствору (Cs⁺)(C₆₀ · –) в BN приводит к количественному выпадению светло-коричневого осадка, который не растворяется в ДМФА, слабо растворим в CS₂ и бензоле, но может быть растворен при нагревании в C₆H₄Cl₂.

Оптические спектры в ИК-, УФ-, видимой и ближней ИК-областях. Чтобы определить зарядовое состояние фуллерена в полученных соединениях, мы исследовали их спектры в ИК-, УФ-, видимой и ближней ИК-областях. Спектры солей 1—6 (табл. 2) похожи и здесь обсуждается типичный спектр только одной соли — $(C_{60})_2$ Mn(DMF)_{3.5} (**4**). Фуллерен C₆₀ имеет четыре ИК-активных колебания, разрешенных по симметрии, с полосами поглощения (ПП) при 527, 577, 1182 и 1429 см⁻¹ (моды $F_{1u}(1-4)$ соответственно)²⁸. Известно^{29,30}, что только мода $F_{1u}(4)$ С₆₀ чувствительна к переносу заряда на молекулу фуллерена и ее ПП сдвигается от 1429 см⁻¹ в нейтральном состоянии до 1395—1388 см⁻¹ в анион-радикальном состоянии. В соединениях, содержащих дианионы C₆₀²⁻, эта ПП находится уже при 1369 см-1.13 ПП мод F_{1u}(1-4) C₆₀ располагаются в спектре 1 при 526, 575, 1182 и 1385 см⁻¹ соответственно (рис. 1, а, стрелки 1—4). Таким образом, положение ПП $F_{1u}(4)$ моды С₆₀ в спектре 1 ближе к зарядовому состоянию фуллерена -1. Увеличение интенсивности ПП моды $F_{1u}(2)$ при 575 см⁻¹ относительно интенсивности ПП моды $F_{1u}(1)$ при 526 см⁻¹ также характерно для отрицательно заряженного фуллерена^{29,30}. Во всех спектрах комплексов присутствует слабая ПП при 1432 см⁻¹ (отмечена стрелкой 5 на рис. 1, а). По своему положению эта ПП может принадлежать нейтральному фуллерену (1429 см⁻¹). Однако растворитель ДМФА, присутствующий в составе комплекса, также имеет ПП в этой области (при 1439 см⁻¹ для чистого ДМФА). Поэтому ПП при 1432 см⁻¹ нельзя однозначно отнести к фуллерену. Спектр 1 в УФ-, видимой и ближней

Рис. 1. Спектры соли (C_{60} ^{·-})₂{(Mn^{2+})(DMF)_{3.5}} (1) в ИК-области (*a*), а также УФ-, видимой и ближней ИК-областях (*b*); *T* = 293 К.

Соеди-		Ближняя ИК-область,		
нение	С ₆₀ .− и (С ₆₀) ₂	ДМФА	λ/нм (С ₆₀ ·-)	
ДМФА	_	657, 1064, 1091, 1256, 1387, 1439, 1506, 1680	_	
1	526, 575, 1182, 1383	660, 1061, 1089, 1257, 1383*, 1433, 1496, 1651	923, 1065	
2	526, 576, 1182, 1383	660, 1062, 1089, 1256, 1383*, 1431, 1495, 1651	946, 1069	
3	526, 575, 1182, 1385	660, 1061, 1107, 1257, 1385*, 1433, 1492, 1649	914, 1069	
4	526, 575, 1182, 1385	661, 1059, 1105, 1253, 1385*, 1432, 1491, 1649	948, 1072	
5	527, 575, 1180, 1385	670, 1060, 1100, 1255, 1385*, 1434, 1490, 1652	1072	
6	526, 576, 1182, 1384	661, 1061, 1092, 1256, 1385*, 1432, 1492, 1659	917, 1064	
$(Cs^+)(C_{60}^{-})$ + FeBr ₂ (AN-BN)	526, 545, 576, 698, 735, 754*, 802, 1182, 1428, 1457	(BN) 685, 754*, 1145, 1489, 2224 **	_	
$(C_{60})_2^{31***}$	420, 479, 527, 549, 575, 612, 709, 726, 769, 796, 1186, 1426, 1462		_	

Таблица 2. Спектры исследованных систем в ИК- и ближней ИК-областях

* ПП перекрываются. ** В спектре присутствуют также несколько слабых ПП, которые нельзя отнести к $(C_{60})_2$ или ВN: 922, 1024 и 1098 см⁻¹. *** Приведено для сравнения.

ИК-областях представлен на рисунке 1, *b*. В нем присутствуют две ПП при 948 и 1072 нм, характерные для анион-радикалов $C_{60}^{\, \cdot - , 30}$ Соли **2**—**6** имеют аналогичные спектры с двумя ПП в ближней ИК-области (см. табл. 2). Таким образом, оптические данные указывают на то, что фуллерены присутствуют в солях в анион-радикальном состоянии. Катионы металлов(п) имеют заряд 2+ и в отсутствие анионов галогенов в составе солей при выполнении условия электронейтральности состав солей должен быть 2 ($C_{60}^{\, \cdot -}$): (M^{2+}), что совпадает с данными элементного анализа ($C_{60}^{\, \cdot -}$)₂{(M^{2+})(DMF)_x (x = 2.4-4).

Помимо ПП анионов фуллерена в спектре присутствуют интенсивные ПП ДМФА (см. рис. 1, *a*, табл. 2). ПП колебания C=O в исходном несвязанном ДМФА находится при 1680 см⁻¹ и сдвигается при образовании солей **1—6** до 1649—1659 см⁻¹. Из этого следует, что молекулы ДМФА координируются посредством групп C=O с катионами металлов(п). Других ПП, помимо ПП анионов фуллеренов и ДМФА, в спектрах **1—6** нет. Из этого следует, что в полученных солях анионы фуллеренов не образуют димеров или полимеров при комнатной температуре, что привело бы к появлению в спектрах новых ПП^{30,31}.

Если по каким-либо причинам (например, при использовании избытка AN при промывке солей) происходит частичное разложение солей **1–6**, то в ИК-спектре появляются ПП нейтрального C₆₀ при 1428 см⁻¹, и интенсивности ПП при 526 и 575 см⁻¹ выравниваются. Таким образом, отсутствие в ИК-спектре ПП при 1428 см⁻¹ и бо́льшая интенсивность ПП при 575 см⁻¹ по сравнению с интенсивностью полосы при 526 см⁻¹ (см. рис. 1, *а*) свидетельствуют о чистоте полученной соли.

Спектры порошков, полученных в смеси AN—BN, в ИК-, УФ-, видимой и ближней ИК-областях похожи независимо от металла. На рисунке 2, *a*, *b* показаны спектры продукта, выделенного в системе $((Cs^+)(C_{60})^-) + FeBr_2)$ (см. табл. 2). Они однозначно указывают на нейтральное состояние фуллерена: ПП моды $F_{1u}(4) C_{60}$ находятся при 1427—1428 см⁻¹, что близко к положению ПП 1429 см⁻¹ в спектре исходного фуллерена. Интенсивность ПП моды $F_{1u}(2)$ при 575 см⁻¹ существенно меньше интенсивности ПП моды $F_{1u}(1)$ при 525 см⁻¹, что также характерно для нейтрального фуллерена. В ближней ИК-области не наблюдается ПП анион-радикалов C_{60} (см. рис. 2, *b*). При этом фуллерен, образующийся в результате ре-

Рис. 2. Спектры продукта, который выпадает из смеси AN—BN при взаимодействии (Cs⁺)(C₆₀·⁻) с FeBr₂ в ИК-области (*a*), а также УФ-, видимой и ближней ИК-областях (*b*); T = 293 К.

Соеди-		g -Фактор (ΔH /мТл)			
нение	T = 2	T = 295 K		T = 4 K	
	M ²⁺	C ₆₀	M ²⁺	C ₆₀	
1	_	1.9951 (5.65)	4.8664 (26.2)	1.9922 (30.9)	
			4.1645 (29.2)		
			3.7337 (27.4)		
2	_	1.9918 (12.6)	_	1.9851 (34.2)	
3	_	1.9954 (7.98)	_	1.9651 (9.85)	
4	2.1390 (15.6)	1.9957 (19.8)	2.0815 (15.2)	_	
	2.0806 (27.8)		2.0275 (36.2)		
	1.8755 (19.8)		1.8848 (23.2)		
5	*	1.9963 (7.88)	*	**	
6	—	1.9988 (3.40)	—	1.9973 (0.32)	

Таблица 3. Параметры сигналов ЭПР солей 1-6 при 295 и 4 К

* Сигнал ЭПР катиона Eu²⁺ регистрируется в спектре **5** как при комнатной температуре (293 K), так и при 4 K, однако *g*-фактор этого сигнала не удается определить. ** Присутствует очень слабый сигнал $C_{60}^{\bullet-}$ (не более 0.5% от общего содержания C_{60}).

акции, не является исходным мономерным фуллереном, а, скорее всего, представляет собой нейтральный димер (C_{60})₂. На это же указывает плохая растворимость полученных светло-коричневых осадков в CS₂ и бензоле, в которых C₆₀ хорошо растворим. В то же время эти осадки растворимы в *o*-Cl₂C₆H₄, в котором также растворяется димер (C₆₀)₂.³¹ Еще одним доказательством образования димера служит появление большого количества новых ПП в ИК-спектре (см. рис. 2, *a*, табл. 2). Самые интенсивные из этих ПП характерны и для ИК-спектра димера (C₆₀)₂³¹ (см. табл. 2).

Магнитные свойства солей 1—6, полученных в ДМФА. Магнитные свойства солей 1—6 исследованы методом спектроскопии ЭПР в интервале температур 4 и 295 К. Параметры спектров ЭПР при 295 и 4 К приведены в таблице 3.

В спектре ЭПР соли 1 при комнатной температуре (295 К) присутствует интенсивный сигнал с g = 1.9951и шириной $\Delta H = 5.65$ мТл (рис. 3, *c*, *d*). Параметры этого сигнала позволяют отнести его к анион-радикалу С₆₀.-, который имеет g-фактор в интервале 1.996—1.999 ($\Delta H = 2 - 6 \text{ мTл}$)^{3,30}. В ионных соединениях С₆₀ сигнал ЭПР обычно сильно сужается при понижении температуры, и при T < 150 K ширина сигнала не превышает 0.5 мТл.^{3,32-35} Отметим, что в известном молекулярном ферромагнетике TDAE • C₆₀ (ТДАЕ — тетракис(диметиламино)этилен) сигнал ЭПР при комнатной температуре имеет ширину 2.2 мТл, при понижении температуры он сужается, а заметное уширение сигнала наблюдается только при переходе соединения в ферромагнитное состояние ниже 16 К.³⁵ Однако в случае соли 1 сигнал ЭПР сохраняет ширину 5.6 мТл при понижении температуры, а при T < 100 К начинает уширяться, достигая максимальной ширины 35.65 мТл при 5 К (рис. 3, *d*). Такие широкие сигналы ЭПР впервые наблюдаются для анион-радикальных солей С₆₀^{.-}. *g*-Фактор сигнала ЭПР соли 1 слабо зависит от температуры вплоть до 100 К, ниже 100 К регистрируется существенный сдвиг g-фактора в сторону меньших значений (1.9850 при 6 К) (см. рис. 3, с). Интегральная интенсивность сигнала увеличивается при понижении температуры, достигает максимума при 5 К, а затем начинает уменьшаться (рис. 3, b). Такое поведение может быть связано с антиферромагнитным взаимодействием спинов С₆₀.-. При комнатной температуре сигнал ЭПР катиона Со²⁺ не наблюдается, по-видимому, вследствие большой ширины. При 100 К в спектре появляется широкий сигнал с g = 4.4024 и $\Delta H = 134$ мТл, который может быть отнесен к катиону Co²⁺ в высокоспиновом состоянии (S = 3/2)^{36,37}. При понижении температуры до 38 К сигнал сужается до 42.2 мТл, после чего становится асимметричным и расщепляется на три компоненты с $g_1 = 4.8664$ ($\Delta H = 26.2$ мТл), $g_2 = 4.1645$ (ΔH = 29.2 мТл) и g_3 = 3.7337 (ΔH = 27.4 мТл) при 4 К (см. рис. 3, а). Интегральные интенсивности этого сигнала и его компонент увеличиваются при понижении температуры, но при T < 9 К резко уменьшается более чем в 2 раза. Это свидетельствует о том, что наряду с анион-радикалами С $_{60}$. – катионы Со²⁺ также вовлечены в антиферромагнитное взаимодействие спинов.

В спектре ЭПР соли 2 регистрируется сигнал C_{60} с g = 1.9918 и $\Delta H = 12.6$ мТл при 295 К. Сигнал ЭПР катионов Ni²⁺ не наблюдали³⁸. При понижении температуры сигнал ЭПР C_{60} - ведет себя так же, как сигнал в спектре 1, однако в данном случае сигнал еще больше уширяется (до 40.1 мТл при 6 K), а *g*-фактор смещается к меньшим значениям (до 1.9721 при 10 K).

Похожее магнитное поведение проявляет соль 3. Сигнал ЭПР С₆₀⁻⁻ характеризуется значением g = 1.9954 ($\Delta H = 7.98$ мТл) при 295 К (рис. 4, *b*, *c*). Как и в случае соли 2, катион Fe²⁺ не проявляется³⁸ в спектрах ЭПР. В противоположность солям 1 и 2, сигнал ЭПР в спектре 3 при T < 295 К слабо сужается при понижении температуры, а его уширение начинается только при T < 100 К (рис. 4, *c*). В результате

Рис. 3. Спектр ЭПР соли **1** при 295 и 4 К (*a*). Температурные зависимости параметров сигнала ЭПР C_{60} ⁻⁻: интегральная интенсивность (*b*), *g*-фактор (*c*) и ширина (*d*). Линия на рис. 3, *b* — аппроксимация экспериментальных данных по закону Кюри—Вейсса с температурой Вейсса –3 К.

при низких температурах сигнал в спектре соли **3** в 3—4 раза у́же сигналов в спектрах ЭПР **1** и **2** ($\Delta H = 10.37$ мТл при 6 К). В остальном изменение параметров сигнала ЭПР С₆₀^{•-} в соли **3** при понижении температуры аналогично описанному для **1** и **2** (см. рис. 4).

Температуры Вейсса, вычисленные по закону Кюри—Вейсса с использованием зависимостей интегральной интенсивности ЭПР сигналов C_{60} .⁻ от температуры в интервале 20—300 K, составляют –3 K для 1 (см. рис. 3, *b*), –24 K для 2 и –19 K для 3 (см. рис. 4, *a*). Это указывает на довольно сильные антиферромагнитноые взаимодействия спинов C_{60} .⁻ в солях 2, 3 и более слабые взаимодействия спинов в соли 1. Корреляция между шириной сигнала при низких температурах и температурой Вейсса отсутствует. По-видимому, в уширение сигнала вносят вклад и другие процессы, например, обменное взаимодействие с парамагнитными катионами металлов(п).

Соль **4** имеет сложный спектр ЭПР при 295 К (рис. 5, *a*), который может быть разложен на четыре лоренцевых компоненты (см. табл. 3). Одна из них с $g_3 = 1.9957$ и $\Delta H = 19.8$ мТл относится к C₆₀^{•-}. Три других компоненты с $g_1 = 2.1390$ ($\Delta H = 15.6$ мТл), $g_2 = 2.0806$ ($\Delta H = 27.8$ мТл) и $g_4 = 1.8755$ ($\Delta H = 19.8$ мТл) относят-

ся к асимметричному сигналу Mn^{2+} .³⁸ При $T \le 200$ К интенсивность компоненты, отнесенной к C₆₀.-, начинает уменьшаться и при T < 150 К эта компонента практически не наблюдается на фоне интенсивного сигнала Mn²⁺. Это хорошо видно в спектре, зарегистрированном при 4 К (рис. 5, а). Таким образом, полученные методом ЭПР данные указывают на исчезновение спинов С₆₀⁻⁻ в образце **4** при 200-150 К, что может быть обусловлено димеризацией анион-радикалов C₆₀.- и образованием диамагнитных димеров (C₆₀⁻)₂, связанных одной связью С-С.^{27,39-42} Для подтверждения данных предположений были изучены магнитные свойства соли 4 с помощью СКВИД-магнитометра (см. рис. 5, b). Магнитный момент этой соли при 300 К составляет 6.21 µВ на формульную единицу, что близко к значению 6.40 µ_B, вычисленному для системы трех невзаимодействующих спинов S = 5/2 + 1/2 + 1/2 (Mn²⁺ имеет высокоспиновое состояние S = 5/2, а C₆₀.⁻ — спиновое состояние S = 1/2). При T < 210 К магнитный момент соли начинает уменьшаться и при 150 К достигает значения 5.81 μ_B (см. рис. 5, b), что близко к значению 5.91 µ_В, вычисленному для системы с одним невзаимодействующим спином S = 5/2 (характерному для Mn²⁺ в высокоспиновом состоянии). Димеризация свойственна ионным соединениям фуллеренов при

Рис. 4. Температурные зависимости параметров сигнала ЭПР анион-радикала C_{60} ⁻⁻ в (C_{60} ⁻⁻)₂{(Fe²⁺)(DMF)₄} (**3**): интегральная интенсивность (*a*), *g*-фактор (*b*) и ширина (*c*). Линия на рис. 4, *a* — аппроксимация экспериментальных данных по закону Кюри—Вейсса с температурой Вейсса – 19 К.

наличии близких контактов между C₆₀^{•–} и наблюдается в интервале температур 150—250 К.^{26,39–42} При T < 150 К магнитная восприимчивость определяется спинами, локализованными на Mn²⁺, и подчиняется закону Кюри—Вейсса с температурой Вейсса, близкой к нулю (15—150 К). Таким образом, образование диамагнитных димеров (C₆₀[–])₂ приводит к магнитной изоляции катионов Mn²⁺.

Димеризацию анион-радикалов C_{60} ⁻⁻ в соли **5** можно непосредственно наблюдать методом спектроскопии ЭПР, так как сигналы ЭПР C_{60} ⁻⁻ и катиона

Рис. 5. (*a*) Спектр ЭПР соли $(C_{60}, -)_2\{(Mn^{2+})(DMF)_{3.5}\}$ (**4**) при 295 и 4 К. Штриховая линия — одна из четырех лоренцевых компонент спектра, отнесенная к $C_{60}, -$. (*b*) Температурная зависимость магнитного момента **4** в интервале 1.9—300 К.

 Eu^{2+} различаются. Сигнал C_{60} . – имеет g = 1.9963 и ΔH = 7.88 мТл при 295 К (рис. 6, с). Мультиплетный сигнал, присутствующий во всем диапазоне магнитных полей от -100 до 700 мТл, относится к катиону Eu²⁺. Для последнего сигнала характерно большое число линий с расстояниями между ними 54.8-82.5 мТл. Эти линии могут появляться из-за расщепления на ядре Eu^{2+} (I = 7/2). Сигнал Eu^{2+} сохраняется вплоть до 4 К (рис. 6, d). При понижении температуры интегральная интенсивность сигнала C₆₀.- начинает уменьшаться в интервале 170-130 К (см. рис. 6, *b*) и при $T \le 100$ К она соответствует вкладу уже менее чем 0.5% спинов от общего числа молекул С₆₀. Слабый сигнал C_{60} · – сохраняется вплоть до 4 К (см. рис. 6, *d*). Эти данные однозначно указывают на димеризацию анион-радикалов С₆₀.- в интервале 170-130 К. Магнитный момент комплекса составляет 7.12 µ_В при 300 К и начинает уменьшаться при T < 180 K, достигая значения 6.85 µ_В при 130 К. Наблюдаемое уменьшение магнитного момента хорошо вписывается в схему перехода от системы трех невзаимодействующих спинов (S = 7/2 + 1/2 + 1/2) к системе, содержащей только один невзаимодействующий спин S = 7/2 (Eu²⁺). Таким образом, вклад анион-радикалов С₆₀.- в магнитную восприимчивость исчезает при 180-130 К, что согласуется с данными спектроскопии ЭПР. Магнитная восприимчивость соединения 5

Рис. 6. Данные магнитных и ЭПР-измерений для $(C_{60}, -)_2\{(Eu^{2+})(DMF)_4\}$ (5): температурная зависимость магнитного момента 5 в интервале 1.9—300 K (*a*); температурная зависимость интегральной интенсивности сигнала ЭПР анион-радикала $C_{60}, -$ в интервале 50—295 K (*b*); спектры ЭПР соли 5 при 295 (*c*) и 4 K (*d*) в широком интервале значений магнитного поля (-100—700 мТл). Врезка на рис. 6, *c* – сигнал ЭПР $C_{60}, -$.

в интервале 15—140 К может быть описана законом Кюри—Вейсса с температурой Вейсса, близкой к нулю. Видно, что образование диамагнитных димеров (C_{60}^{-})₂ и в случае **5**, и в случае **4** исключает магнитный обмен между катионами Eu²⁺.

Замена парамагнитных катионов металлов в солях 1-3 на диамагнитный катион Cd²⁺ в соли 6 кардинальным образом изменяет ее магнитные свойства. В спектре ЭПР этой соли при 295 К наблюдается сигнал ЭПР С₆₀.- с g = 1.9988 (ΔH = 3.4 мТл). При понижении температуры сигнал сильно сужается: $\Delta H = 0.32$ мТл при 4 К (рис. 7, *c*). Понижение температуры сопровождается также незначительным (по сравнению со спектрами солей 1-3) сдвигом g-фактора в сторону меньших значений (рис. 7, b) и ростом интегральной интенсивности сигнала вплоть до 4 К (см. рис. 7, а) без максимума при 5-6 К, как это наблюдалось при исследовании солей 1-3. Такое поведение может быть связано с магнитной изоляцией анион-радикалов C₆₀.-. Как правило, проявление магнитных взаимодействий при низких температурах в ионных соединениях фуллеренов приводит к заметному уширению сигнала ЭПР С₆₀.- и сдвигу *g*-фактора^{32,33,35,42}, чего не наблюдается для соли 6. Температура Вейсса, вычисленная по температурной зависимости интегральной интенсивности сигнала ЭПР С₆₀⁻⁻ в интервале 20—300 К, составляет всего –0.4 К,

что также согласуется с отсутствием магнитных взаимодействий между C₆₀.

Исследование продуктов взаимодействия анион-радикалов $C_{60}^{\bullet-}$ с катионами металлов в смеси AN—BN методом спектроскопии ЭПР. В спектрах ЭПР продуктов реакции анион-радикалов $C_{60}^{\bullet-}$ с катионами металлов в смеси AN—BN (табл. 4) наблюдаются сигналы двух типов. Сигналы с g = 1.9998-1.9990 относятся к $C_{60}^{\bullet-}$. Они имеют очень слабую интенсивность и проявляются только при низких температурах. Во всех случаях вклад $C_{60}^{\bullet-}$ не превышает 0.1-0.3%от общего числа молекул C_{60} (в пересчете на общее количество C_{60} , взятого в реакцию). Эти данные подтверждают сделанные при анализе оптических спектров выводы, что в реакции образуются нейтральные фуллерены.

В спектрах ЭПР продуктов, образующихся при взаимодействии C_{60} ⁻⁻ с парамагнитными катионами Co^{2+} , Fe^{2+} и Mn^{2+} , наблюдаются интенсивные сигналы ЭПР, относящиеся к металлам (см. табл. 4). Эти спектры существенно отличаются от спектров ЭПР исходных солей металлов (FeBr₂ и CoBr₂ не дают сигналов ЭПР, а сигнал MnI₂ характеризуется g = 2.017 и $\Delta H = 44.7$ мT при 295 K) и спектров ЭПР катионов металлов(п) в солях **1**, **3** и **4**. Поскольку в обсуждаемой реакции происходит окисление анион-радикалов C_{60} ⁻⁻ до нейтрального состояния, степень

Рис. 7. Температурные зависимости параметров сигнала ЭПР анион-радикала C_{60} ^{·-} в (C_{60} ^{·-})₂{(Cd^{2+})(DMF)_{2.5}} (6): интегральная интенсивность (*a*), *g*-фактор (*b*), ширина линии (*c*). Линия на рис. 7, *a* — аппроксимация экспериментальных данных по закону Кюри—Вейсса с температурой Вейсса –0.4 К.

окисления металлов также должна уменьшаться от +2 до +1 или 0. В связи с тем, что ИК-спектры этих продуктов содержат ПП ВN, можно предположить, что металлы, сольватированные бензонитрилом, также выпадают из раствора вместе с нейтральным фуллереном. Перекристаллизация полученных продуктов из $o-Cl_2C_6H_4$ в анаэробных условиях приводит к уменьшению интенсивности сигнала ЭПР металла в несколько раз, и после двух-трех перекристаллизаций этот сигнал исчезает. При первой перекристаллизании продукта в $o-Cl_2C_6H_4$ сигнал ЭПР металла наблюдается также и в растворе. Возможно, это связано с тем, что сольватированный бензонитрилом металл частично растворятся в $o-Cl_2C_6H_4$.

Особенности взаимодействия $C_{60}^{\bullet-}$ с катионами металлов. Таким образом, полученные данные свидетельствуют о том, что продукты взаимодействия анион-радикалов $C_{60}^{\bullet-}$ с катионами двухвалентных металлов в ДМФА и смеси AN—BN существенно различаются. В ДМФА образуются соли **1**—6, содержащие анион-радикалы $C_{60}^{\bullet-}$ и сольватированные ДМФА катионы металлов(п):

$$(Cs^+)(C_{60}^{-}) + M^{2+} \rightarrow (C_{60}^{-})_2 \{(M^{2+})(DMF)_x\}$$

(x = 2.4-4).

В смеси AN—BN получаются только нейтральные продукты. Более того, соли $(C_{60}^{-})_2\{(M^{2+})(DMF)_x\}$ разлагаются в AN или *o*-Cl₂C₆H₄ с потерей ДМФА, при этом фуллерен переходит в нейтральное состояние. Следует отметить, что ДМФА имеет существенно бо́льшую координирующую способность, чем AN и BN. Донорное число* составляет 26.6 для ДМФА и только 14.1 и 11.9 для AN и BN соответственно⁴³. Можно предположить, что разложение солей протекает через стадию координации анион-радикалов C₆₀⁻⁻ с катионом металла(II). Сильнокоординирующие растворители занимают места в координационной сфере катиона металла(II) и не позволяют C₆₀⁻⁻ координироваться с металлом, что делает соли стабильными в этих растворителях. Если C₆₀⁻⁻ вытесня-

* Донорное число (DN) определяется как $-\Delta H_0$ реакции растворителя с AsCl₅ в инертном растворителе (1,2-дихлорэтане).

Реакция	g -Фактор (ΔH /мТл)				
	<i>T</i> =	T = 295 K		T = 4 K	
	M ²⁺	C ₆₀ *	M ²⁺	C ₆₀ ·-*	
$(Cs^{+})(C_{60}^{-}) + MnI_{2}$	2.021 (66.0)	_	_	1.9994 (0.33)	
$(Cs^{+})(C_{60}^{-}) + FeBr_{2}$	2.074 (65.2)	_	3.360 (172.0)	1.9992 (0.45)	
$(Cs^{+})(C_{60}^{-}) + CdBr_{2}$	_	1.9998 (1.85)	_	1.9994 (0.32)	
$(Cs^{+})(C_{60}^{-}) + CoBr_{2}$	2.260 (95.0)	_	_	1.9990 (0.36)	
	2.157 (24.2)	_	2.147 (22.2)		

* Во всех случаях интенсивность сигналов ЭПР анион-радикала C_{60} ·- очень низкая и соответствует вкладу не более 0.1-0.3% спинов от общего числа молекул C_{60} .

ет слабокоординирующий растворитель из координационной сферы металла, то образуется промежуточное координационное соединение $(C_{60}^{-})_2(M^{2+})$, в котором происходит перераспределение электронной плотности между C_{60}^{-} и M^{2+} с образованием нейтрального фуллерена и понижением степени окисления металла. Например, в солях $(Cat^{+}){M(CO)_{4(3)}(\eta^2 - C_{60})^{-}}$ (M = Co, Mn и Re) отрицательный заряд после η²-координации анионного карбонила металла на фуллерен сосредоточен в основном на металле, а фуллерены становятся практически нейтральными¹⁷⁻¹⁹. Координационное соединение $(C_{60}^{-})_2(M^{2+})$ нестабильно и распадается в растворе на нейтральный димер фуллерена и металл, сольватированный BN. Образование нейтрального фуллерена вследствие окисления анион-радикалов С₆₀.- катионами металлов(п) без координации к металлу, по-видимому, не может происходить, так как редокс-потенциалы катионов M^{2+} в полярных растворителях существенно более отрицательны (например, $E^{2+/0}$ для Mn²⁺, Co²⁺ и Fe²⁺ < -1.3 В, относительно нас. к.э. в ДМФА)⁴⁴, чем потенциал окисления C_{60} . $(E^{0/-} = -0.26 \text{ B}, \text{ относительно нас. к.э. в ДМФА})^{45}$. Образование димера (С₆₀)₂ при разложении соли может быть связано со структурой нестабильного интермедиата (C₆₀⁻)₂(M²⁺), в котором катион металла координирует два анион-радикала фуллерена. При распаде такого интермедиата будут получаться две молекулы C₆₀ с активированными π-связями, что способствует их димеризации. Ранее уже наблюдали³¹ образование димера (С60)2 из нейтрального С60 при активации последнего, например, под действием КСN. Итак, реакцию в смеси AN-BN можно представить следующим образом:

$$(Cs^+)(C_{60}^{-}) + M^{2+} \rightarrow (C_{60}^{-})_2(M^{2+})(BN)_x \rightarrow$$

 $\rightarrow (C_{60})_2\{M(BN)_x\} \rightarrow (C_{60})_2 + M(BN)_x.$

Таким образом, в работе показано, что продукты взаимодействия анион-радикалов C_{60} ⁻⁻ с катионами двухвалентных металлов в ДМФА и смеси AN—BN существенно различаются. В ДМФА получаются соли $(C_{60}^{--})_2\{(M^{2+})(DMF)_x\}$ (x = 2.4-4, **1**–6), содержащие анион-радикалы C_{60}^{--} и сольватированные ДМФА катионы металлов(II), а в смеси AN—BN — только нейтральные продукты разложения этих солей.

Анион-радикальные соли фуллеренов с парамагнитными катионами двухвалентных d- и f-металлов получены впервые. Ранее^{15,16,27,46} были известны только анион-радикальные соли фуллеренов с диамагнитными катионами щелочных металлов, которые сольватированы ДМФА или ТГФ. Ионное основное состояние солей **1**—**6** подтверждено спектрами в ИК-, ближней ИК-областях и спектрами ЭПР. По своему магнитному поведению соли **1**—**6** можно разделить на три группы. В солях **1**—**3**, содержащих катионы Co^{2+} , Ni^{2+} и Fe^{2+} , анион-радикалы C_{60} ⁻⁻ не димеризуются до самых низких температур (4 K). Присутствие спинов как на фуллерене, так и на M^{2+} приводит к антиферромагнитным взаимодействиям между анион-радикалами C_{60} ⁻⁻ (особенно сильные взаимодействия отмечены для солей с Ni²⁺ и Fe²⁺), в которые также могут быть вовлечены и катионы металлов, что видно на примере соли с Co²⁺. Однако следует подчеркнуть, что эти антиферромагнитные взаимодействия, по-видимому, имеют только ближний порядок, тогда как антиферромагнитного упорядочения спинов в дальнем магнитном порядке в этих солях не наблюдается вплоть до 4 К.

Соли второй группы (4 и 5) содержат катионы Mn²⁺ и Eu²⁺. В спектрах ЭПР солей **4** и **5** наблюдаются сигналы анион-радикалов C₆₀.- и катионов металла(II), но, в отличие от 1-3, спины анион-радикалов С₆₀.- исчезают при 210-130 К вследствие образования диамагнитных димеров (С₆₀⁻)₂. Это сопровождается исчезновением сигнала ЭПР С $_{60} \cdot^-$ и уменьшением магнитного момента комплекса. Димеризация обратима, и при нагревании выше 130-210 К димеры диссоциируют на исходные анион-радикалы С₆₀.-. После димеризации спины, локализованные на катионах Mn²⁺ и Eu²⁺, магнитно изолированы, так как катионы металлов могут быть пространственно разделены диамагнитными димерами (C₆₀⁻)₂. Аналогичная ситуация наблюдается в ионных комплексах фуллеренов с металлоценами, в которых димеризация С₆₀.- приводит к магнитной изоляции парамагнитных катионов металлоценов диамагнитными димерами (C₆₀⁻)₂ и (C₇₀⁻)₂.²⁷

К третьему типу относится соль, содержащая диамагнитный катион Cd²⁺ (**6**). Ее поведение указывает на магнитную изоляцию анион-радикалов C₆₀⁻⁻ диамагнитными катионами (Cd²⁺)(DMF)_{2.5}. Таким образом, для проявления в соли магнитных взаимодействий важно присутствие спинов как на фуллерене, так и на катионе металла(п). Присутствие в солях диамагнитных частиц (димер (C₆₀⁻⁻)₂, (Cd²⁺)(DMF)_{2.5}) нарушает магнитные взаимодействия.

В дальнейшем планируется изучить проводящие свойства солей **1—6**. В связи с тем, что проводимость в них осуществляется за счет анион-радикалов C_{60} ^{·-}, спины которых вовлечены в антиферромагнитные взаимодействия, в этих системах можно ожидать влияния магнитного поля на проводимость.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 06-03-32824 и № 06-03-91361), INTAS для молодых ученых (грант YSF 05-109-4653) и Российского фонда поддержки отечественной науки.

Список литературы

- 1. M. J. Rosseinsky, J. Mater. Chem., 1995, 5, 1497.
- 2. B. Gotschy, Fullerene Sci. Technol., 1996, 4, 677.
- 3. Д. В. Конарев, Р. Н. Любовская, *Успехи химии*, 1999, 23 [*Russ. Chem. Rev.*, 1999, **68**, 19 (Engl. Transl.)].
- 4. E. Ozdaz, A. R. Kortan, N. Kopylov, A. P. Ramirez, T. Siegrist, K. M. Rabe, H. E. Bair, S. Schuppler, P. M. Citrin, *Nature (London)*, 1995, **375**, 126.
- 5. X. H. Chen, G. Roth, Phys. Rev. B, 1995, 52, 15534.

- I. Margiolaki, S. Margadonna, K. Prassides, T. Hansen, K. Ishii, H. Suematsu, J. Am. Chem. Soc., 2002, 124, 11288.
- Y. Maruyama, S. Motohashi, N. Sakai, K. Watanabe, K. Suzuki, H. Ogata, Y. Kubozono, *Solid State Commun.*, 2002, **123**, 229.
- 8. K. Himmel, M. Jansen, Eur. J. Inorg. Chem., 1998, 1183.
- 9. K. Himmel, M. Jansen, Chem. Commun., 1998, 1205.
- 10. K. Himmel, M. Jansen, Inorg. Chem., 1998, 37, 3437.
- Т. В. Магдесиева, Д. Н. Кравчук, В. В. Башилов, И. В. Кузнецова, В. И. Соколов, К. П. Бутин, Изв. АН. Сер. хим., 2002, 1459 [Russ. Chem. Bull., Int. Ed., 2002, 51, 1588].
- 12. P. C. Trulove, R. T. Carlin, G. R. Eaton, S. S. Eaton, J. Am. Chem. Soc., 1995, **117**, 6265.
- D. V. Konarev, S. S. Khasanov, G. Saito, I. I. Vorontsov, A. Otsuka, R. N. Lyubovskaya, Yu. M. Antipin, *Inorg. Chem.*, 2003, 42, 3706.
- R. E. Douthwaite, M. A. Green, M. L. H. Green, M. J. Rosseinsky, J. Mater. Chem., 1996, 6, 1913.
- H. Kobayashi, H. Tomita, H. Moriyama, A. Kobayashi, T. Watanabe, *J. Am. Chem. Soc.*, 1994, **116**, 3153.
- H. Moriyama, H. Kobayashi, A. Kobayashi, T. Watanabe, Chem. Phys. Lett., 1995, 238, 116.
- D. K. Patel, D. M. Thompson, M. C. Baird, L. K. Thompson, K. F. Preston, *J. Organomet. Chem.*, 1997, **546**, 607.
- D. M. Thompson, M. Bengough, M. C. Baird, *Organo*metallics, 2002, 21, 4762.
- M. Bengough, D. M. Thompson, M. C. Baird, Organometallics, 1999, 18, 2950.
- 20. A. L. Balch, D. A. Costa, K. Winkler, J. Am. Chem. Soc., 1998, 120, 9614.
- A. Hayashi, A. de Bettencourt-Dias, K. Winkler, A. Balch, J. Mater. Chem., 2002, 12, 2116.
- H. Nagashima, A. Nakaota, Y. Sayto, M. Kato, T. Kawanishi, K. Itoh, J. Chem. Soc., Chem. Commun., 1992, 377.
- H. Nagashima, Y. Kato, H. Yamabuchi, E. Kimura, T. Kawanishi, M. Kato, Y. Saito, M. Haga, K. Itoh, *Chem. Lett.*, 1994, 1207.
- 24. Y. L. Hwang, C. C. Yang, K. C. Hwang, J. Phys. Chem. A, 1997, 101, 7971.
- 25. P.-M. Allemand, K. C. Khemani, A. Koch, F. Wudl, K. Holczer, S. Donovan, G. Grüner, J. D. Thompson, *Science*, 1991, 253, 301.
- 26. T. Kitagawa, Y. Lee, K. Takeuchi, *Chem. Commun.*, 1999, 1529.
- D. V. Konarev, S. S. Khasanov, G. Saito, A. Otsuka, Y. Yoshida, R. N. Lyubovskaya, J. Am. Chem. Soc., 2003, 125, 10074.

- M. S. Dresselhaus, G. Dresselhaus, in *Fullerene Polymers and Fullerene Polymer Composites*, Eds P. C. Eklund, A. M. Rao, Springer-Verlag, Berlin, 1999, p. 1.
- 29. T. Picher, R. Winkler, H. Kuzmany, *Phys. Rev. B*, 1994, **49**, 15879.
- 30. C. A. Reed, R. D. Bolskar, Chem. Rev., 2000, 100, 1075.
- 31. G.-W. Wang, K. Komatsu, Y. Murata, M. Shiro, *Nature*, 1997, **387**, 583.
- 32. D. V. Konarev, A. Yu. Kovalevsky, S. S. Khasanov, G. Saito, A. Otsuka, R. N. Lyubovskaya, *Eur. J. Inorg. Chem.*, 2005, 4822.
- 33. D. V. Konarev, S. S. Khasanov, A. Otsuka, G. Saito, R. N. Lyubovskaya, *Inorg. Chem.*, 2007, **46**, 2261.
- 34. G. Völkel, A. Pöppl, J. Simon, J. Hoentsch, S. Orlinskii, H. Klos, B. Gotschy, *Phys. Rev. B*, 1995, **52**, 10188.
- 35. K. Tanaka, A. A. Zakhidov, K. Yoshizawa, K. Okahara, T. Yamabe, K. Yakushi, K. Kikuchi, S. Suzuku, L. Ikemoto, Y. Achiba, *Phys. Rev. B*, 1993, 47, 7554.
- 36. B. M. Weckhuysen, A. A. Verberckmoes, M. G. Uytterhoeven, F. E. Mabbs, D. Collison, E. De Boer, R. A. Schoonheydt, J. Phys. Chem. B, 2000, 104, 37.
- 37. S. Dzwigaj, M. Che, J. Phys. Chem. B, 2006, 110, 12490.
- A. Abragam, B. Bleaney, in *Electron Paramagnetic Resonance* of Transition Ions, Dover Publications, Inc., New York, 1986.
- 39. D. V. Konarev, S. S. Khasanov, A. Otsuka, G. Saito, J. Am. Chem. Soc., 2002, 124, 8520.
- D. V. Konarev, S. S. Khasanov, A. Y. Kovalevsky, G. Saito, A. Otsuka, R. N. Lyubovskaya, *Dalton Trans.*, 2006, 3716.
- 41. Д. В. Конарев, С. С. Хасанов, Р. Н. Любовская, Изв. АН. Сер. хим., 2007, 361 [Russ. Chem. Bull., Int. Ed., 2007, 56, 371].
- 42. D. V. Konarev, S. S. Khasanov, G. Saito, A. Otsuka, R. N. Lyubovskaya, *J. Mater. Chem.*, 2007, **17**, 4171.
- D. V. Konarev, I. S. Neretin, G. Saito, Yu. L. Slovokhotov, A. Otsuka, R. N. Lyubovskaya, *Dalton Trans.*, 2003, 3886.
- 43. V. Gutman, R. Schmid, Coord. Chem. Rev., 1974, 12, 263.
- 44. J. F. Coetzee, Pure. Appl. Chem., 1977, 49, 877.
- 45. D. Dubois, G. Moninot, W. Kutner, T. M. Jones, K. M. Kadish, *J. Phys. Chem.*, 1992, **96**, 7137.
- 46. J. Chen, Z.-E. Huang, R.-F. Cai, R.-F. Shao, S.-M. Chen, H.-J. Ye, *Chem. Commun.*, 1994, 2177.

Поступила в редакцию 28 апреля 2008; после доработки — 2 июня 2008